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HARMONIC MAPS FROM A 2-TORUS
TO THE 3-SPHERE

N. J. HITCHIN

0. Introduction

There have been many advances in recent years in the theory of har-
monic maps of Riemann surfaces to spheres or symmetric spaces. These
give constructions which produce harmonic maps from algebraic curves
in associated complex manifolds (e.g. [7], [10]) and which provide many
new examples, but unfortunately none of these methods says anything
about the simplest and most basic situation of a harmonic map into the
2-sphere or the 3-sphere. Indeed, Bryant has shown that, however many
derivatives one takes, there is no way of obtaining a construction like this
for a minimal surface in the 3-sphere s? , a particular case of a harmonic
map.

In this paper we shall tackle this same simple basic situation, in the
case where the Riemann surface is a torus with any conformal structure.
We shall show that the equations for a harmonic map from a torus to s
reduce in a different way to algebraic geometry, in fact the geometry of a
hyperelliptic curve, which we call the spectral curve X . This curve has finite
genus and is constrained by integrality conditions on the periods of certain
differentials of the second and third kind. These constraints are difficult
to handle in general, but we shall show the existence of new examples of
harmonic maps, and in particular minimal tori in s , by finding suitable
curves. Furthermore, the method of solution shows that harmonic maps
to S° are by no means rigid in general. They admit deformations which
are parametrized by a real torus, of dimension p, where p is the genus
of X.

This method of solution has its origins both in the theory of integrable
systems like the KAV equation or sinh-Gordon equation and in the study
of magnetic monopoles via the Bogomolny equations, where in both cases
an algebraic curve lies at the heart of the solution. It is the analogy with
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the Bogomolny equations, static solutions of the self-dual Yang-Mills equa-
tions, which we follow. We begin in §1 by introducing a system of equa-
tions which is globally more general than the harmonic map equations, but
lies in a natural way within the realm of gauge theories on a 2-dimensional
manifold.

We consider a connection 4 on a principal SU(2)-bundle P over the
torus M, and an auxiliary Higgs field ® € Q! ’D(M ; ad P®C). The basic
equations we treat are then

(*) d®=0, F,=[®, ],

where F, isthe curvature of 4. They differ by a sign from the self-duality
equations on M which are dealt with in detail in [15].

The link between solutions to (*) and harmonic maps is provided by
considering the two connections V, + ® —®" and V, — ® + @ which,
as a consequence of the equations, are flat. If they have trivial holonomy,
then the two corresponding covariant constant sections of P are related
by a harmonic map from M to SU(2). If the holonomy is nontrivial,
then the equations describe a harmonic section of a flat 3-sphere bun-
dle. Many of the natural geometric conditions one might impose upon the
map are naturally interpreted in this formalism. In particular a conformal
harmonic map (whose image would be a minimal surface in S ) is distin-
guished by the property det® = 0, and a map to a totally geodesic S? is
distinguished by the property that A is reducible.

The gauge-theoretic equations () are equivalent to the statement that
the curvature of the SL(2, C) connection V ,+{ _ICD—CCD* vanishes for all
{ € C*. The holonomy of this flat connection, and its dependence on (,
forms the subject matter of §§2 and 3. We consider the holonomy around
two generators of the fundamental group #,(M) and show in §2 that the
eigenvalues u({) and ji({) of these two holonomy matrices, which are
2-valued functions on C*, actually have a finite number of branch-points.
This argument involves the full 2-dimensional compactness of M and the
study of the family of elliptic operators dZ—CCD* . Furthermore, the branch
points of u({) and fi{{) are shown to coincide, and this depends on the
fact that #,(M) is abelian. In §3 the limiting behavior of the holonomy
as { — 0 and { — oo is investigated. This again uses the regularity
of families of elliptic operators—standard singular perturbation theory
for the holonomy around one generator would not be sufficient to obtain
enough information. From the results of these two sections, we show in §4
that @ = du/u and 6 = dji/ji are well defined differentials of the second
kind on a ramified double covering of CP' (the compactification of C”)
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with double poles at 0 and oo. From their definition their periods lie in
2niZ.

The nonsingular hyperelliptic curve obtained this way is not quite the
spectral curve, but is instead its normalization—the spectral curve X 1is
allowed to have singularities. In §5 we define the spectral curve by intro-
ducing the appropriate singularities. The differentials are well defined on
X as is the eigenspace bundle E_ for x € M. This is the eigenspace of
the holonomy of the flat connection around closed curves through x. It
is a line bundle over the whole of £ of degree —(p + 1) where p is the
arithmetic genus of X.

To illustrate the development thus far, we compute in §6 the spectral
curve of a simple example—the Clifford torus. This is the minimal surface
in $° defined by Iz, =z, =1/ V2. The spectral curve is here rational—
the double covering of CP' branched over 0 and oo.

As x € M wvaries, the eigenspace bundle varies in the Picard variety of
X, the space of equivalence classes of holomorphic line bundles of degree
—(p +1). We show in §7 that, considering this variety as an orbit of the
abelian group H'(Z: @)/H'(X; Z), the variation is linear in the real and
imaginary parts of a uniformizing parameter of M , which is effectively a
linearization of the equation (*). Using the fact that E, is quaternionic
with respect to a real structure on X, we deduce a number of properties
of the bundle, including the fact that it is nonspecial.

At this stage we have shown that any solution of the equation () deter-
- mines a hyperelliptic curve ¥, differentials 8 and § with periods in 27iZ
and a line bundle E, (corresponding to an origin in M ), satisfying cer-
tain reality properties. In §8 we reverse the whole process, and show how
to construct a solution of the equations from such data. This construction
is framed largely in geometric form. Its analytic counterpart, which would
be necessary to derive explicit solutions, would be couched in terms of
Baker-Akhiezer functions, #-functions or z-functions as in [26], for ex-
ample. Special classes of solutions correspond to special properties of the
data. For example det® = 0 (the case of a conformal map) requires 0
and oo to be branch points of X, and A reducible (the case of a map to
s? ) requires an extra involution 7 on X such that the linear variation of
the eigenspace bundle takes place in the Prym variety of 7. The condition
for obtaining an actual harmonic map is

u(l)=p(-1)=a(1)=a(-1)=1
It can also be expressed in terms of constraints on the periods of integrals
of the third kind on X having simple poles over +1 and —1 in cP'.
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There is only one class of harmonic maps which cannot be constructed
this way, and those are the ones for which u and ji are constant. There
are then no branch points, no differentials, no spectral curve. These maps
are, however, the conformal maps to S? , and they can be found straight-
forwardly in terms of systems of divisors on the Riemann surface M .

In producing the construction, we find that the constraints to produce
a harmonic map are actually independent of the choice of line bundle
E, . So, given one harmonic map we obtain others by varying E, in the
Picard variety of quaternionic bundles of degree —(p + 1). When X is
nonsingular, this is a p-dimensional real torus, so gives a p-dimensional
deformation space for the map.

The construction would be worth little if there were no examples at
all, and so §§9-12 are devoted to finding curves satisfying the required
properties for genus 0-3. In the case of a rational curve, it is easy to
find the constraints—they are of an algebraic rather than transcendental
nature. One may also easily write down the harmonic maps. We find
that the only conformal maps are coverings of the Clifford torus. The
elliptic solutions in §10 include two well-known examples. The first is the
Gauss map of the Delaunay surface. This is the surface of revolution in
R® generated by rolling an ellipse along the x-axis, and rotating the curve
traced out by its focus. This is a classical example of a surface of constant
mean curvature, and by the theorem of Ruh and Vilms [24] the Gauss map
is harmonic. This map is doubly periodic and so gives a harmonic map
of the torus. Elliptic functions are clearly involved here. The second case
concerns minimal toriin S° which are invariant under a circle subgroup of
SO(4). By interpreting these as closed geodesics in a surface of revolution,
Hsiang and Lawson [16] characterized these in terms of rational values of
an elliptic integral. For us these two uses of elliptic functions are simply a
manifestation of the fact that the spectral curve is elliptic, i.e., of genus 1.

For the case of genus 2 in §11 we consider a curve invariant by a cyclic
group of order 4 and derive the condition for a harmonic map as a certain
hyperelliptic integral taking values in Q(i). Since 0 and oo are branch
points in this case, we find minimal tori in Ss3.

In these cases, where p < 2, the deformations of the harmonic map
obtained by varying E, in the Picard variety are all accounted for by
conformal transformations of the torus within itself. Only in the case of
p > 3 will we obtain a true deformation of the image of the map. Thus the
genus 3 example produced in §12 is important for possessing this property.
It turns out that it is in fact already known and consists of the Gauss map
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of Wente’s surface [28], an immersed torus of constant mean curvature in
R>. This is a harmonic map to S%, but if E, moves out of the Prym
variety, the image of the torus moves off the 2-sphere. We make contact
here also with Abresch’s analytic formula for Wente’s surface in terms
of elliptic functions [1]—the Prym variety in question is covered by the
product of two elliptic curves. The deformations of Wente’s Gauss map
will however require fully hyperelliptic functions of genus 3 to describe.

From the point of view presented here, all the information about a har-
monic map is stored in the geometry of the spectral curve. It is not in
general easy to extract information of a geometric nature about the map
from the curve. We do however succeed in §13 in calculating the energy
in terms of coefficients of expansions of the differentials § and é about
their poles. Another question to ask is which minimal tori are actually
embedded? Some rough information is provided by the theorem of Choi
and Schoen [8] which shows that the space of embedded minimal surfaces
is compact. Knowing that the genus p of the spectral curve depends con-
tinuously on the parameters, this tells us that only finitely many values of
p give embedded minimal tori. It is conjectured that the Clifford torus is
the only embedded minimal torus, which is precisely the statement p = 0.

There are some results, however, which are naturally suggested by our
methods. For example, a spectral curve of genus p giving an immersed
minimal torus has branch points 0, 00, @, =+ , o, @ , -, a;l giv-
ing 2p real degrees of freedom. The principal parts of 8 and i give
four more, but the constraints on their periods give 2p conditions. There
are four further constraints for an actual harmonic map, and so assuming
transversality, for each p we have a discrete family of spectral curves and
so in particular a countable number of possible moduli for the torus. There
appears this way to be a severe constraint on the modulus of a torus in
order for it to be conformally minimally immersed in S3 . This contrasts
with the case of $* in which any Riemann surface can be conformally
minimally immersed [7].

A proper treatment of this phenomenon requires an investigation into
the geometry of the moduli space of solutions to the full gauge-theoretic
equations (), and this we postpone for a later paper.

1. Gauge-theory formalism

We shall begin by considering a reformulation of the equations for a
harmonic map of a Riemann surface M to a compact Lie group G in
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terms of a connection on a principal G-bundle over M and an auxiliary
field. This will allow us greater freedom and generality and to make use
of approaches suggested by parallel gauge-theoretic problems.

Suppose first that f: M — G is a smooth map from a compact Riemann
surface to a Lie group endowed with a bi-invariant metric.

The derivative df € Q'(M; f*(TG)) is a one-form with values in the
pull-back of the tangent bundle of G . The Levi-Civita connection on TG
is pulled back to a connection 4 on f* TG, with structure group G. We
denote by d, the usual covariant exterior derivative d : Q°(M ; 7 (TG))
— Q"M ; f*(TG)). The derivative df automatically satisfies the equa-
tion
(1.1) d (df)=0.

The map f is harmonic if df satisfies the equation d;(df) = 0. If we
use the Hodge star operator =: Ql(M ) — QI(M ), this is equivalent to

(1.2) d (+df) = 0.

Since the star operator in the middle dimension is conformally invariant,
these equations are themselves dependent only on the conformal structure
of the Riemann surface M .

Now the Levi-Civita connection of a compact Lie group may be ex-
pressed in terms of two other connections. We have the flat connection
obtained by trivializing the tangent bundle by /left translation, and simi-
larly another flat connection obtained by right translation. Denoting their
covariant derivatives by V, and V., then the Levi-Civita connection V
is the average of the two:

(1.3) V=13(Ve+V,).
(This relation is usually expressed by means of the covariant derivatives
of left-invariant vector fields, giving the formula V,Y = %[X , Y1)

The two trivial connections V, and V, are gauge-equivalent, the gauge

transformation being just the adjoint representation on the Lie algebra—
the space of left-invariant vector fields. Thus

—1
g V, 8=V,

R>

or equivalently
-1
(1.4) g dg=V,-V,.

Given a map f: M — G, we pull back the connections and obtain from
(1.3) and (1.4)

—1
V,=5(Ve+V,), [df=V,-V,.
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The expression f ~ld 'f is here a 1-form with values in the Lie algebra of
left-invariant vector fields, but left-translating it back, it is the derivative
df of the map, a 1-form with values in f*(7'G). This allows us to rewrite
the harmonic map equations in gauge-theoretic terms on M . We have a
principal G-bundle P with connection V, and trivial connections V,
and V., suchthat V = %(VL—i-VR) . The difference V-V, isa 1-form
2¢ with values in the vector bundle ad P associated to P by the adjoint
representation. (1.1) and (1.2) now become

(1.5) , d, =0, d,*¢=0.
These simplify if we write ¢ = ® — ®* where P Q' %(M;ad PRC) is
the component of ¢ of type (1, 0). Since
(D - D) =i(d+ D),
equations (1.5) give
d(@-®")=d,®-d " =0,
d(P+®")=d,®+d P =0,
and hence
(1.6) d® = 0.

Here d;': Q' ’O(M; ad PRC) — Q"' (M ; ad P®C) is the Cauchy-Riemann
operator defined by the connection A-—the (0,1) part of the covariant
derivative. The d;' gives ad P ® C the structure of a holomorphic vec-
tor bundle (see [5]), sometimes called the Koszul-Malgrange structure.
With this interpretation, (1.6) states that @ is a holomorphic section of
ad P ®. K, where K is the canonical bundle of holomorphic 1-forms on
M.

There is a further equation arising from the fact that V, =V, —¢ and
Ve =V + ¢ are flat connections. Knowing the curvature of V; to be
Zero gives

O=d, =d,~¢) =d.+¢ (sinced, s =0)
=F +(®-0") =F, - 00" - .

Using the usual extension of the Lie bracket to Lie-algebra valued forms,
we may write this equation together with (1.6) as

di®=0,
F,=[®, ®'].

(1.7)
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We shall call 4 the connection associated to the harmonic map, and @ the
Higgs field. This is a notation arising from gauge theories in mathematical
physics. In fact, locally, (1.7) may be interpreted as the self-dual Yang-
Mills equations in R* with signature (++ ——) which are invariant under
translation in the last two variables. The analogous reduction of the self-
dual Yang-Mills equations in Euclidean R* leads to the equations

d®=0, F,=-[®, 0,

which were studied in [15]. There it was shown that there are no non-
abelian solutions to these equations on a two-dimensional torus. By con-
trast we shall see that there is a nontrivial theory for equations (1.7).

Let us restrict ourselves now to the case G = SU(2), with its bi-invariant
metric given by the Killing form. This is of course a metric of constant
curvature on SU(2) = st

There are three special types of harmonic map from a Riemann surface
to SU(2) which not only have their own individual geometrical interest,
but also, as we shall see, lead to distinct approaches in solving the equa-
tions.

The first type is a conformal harmonic map: the puil-back of the metric
on SU(2) isametricon M in the conformal class of the Riemann surface.
Geometrically, the image of M is then an immersed minimal surface in
SU(2) [18]. A slight extension of this is the notion of branched conformal
harmonic map, where the pulled-back metric becomes degenerate at a finite
number of points—the branch points of the map—but elsewhere is in the
conformal class.

The second type of map is a harmonic map 1o a tofally geodesic 2-sphere
in §° = SU{(2). The Gauss map of a surface of constant mean curvature
in R® is a harmonic map to the 2-sphere [24].

The third type is a combination of the two: a branched conformal map to
the 2-sphere. Such a map is by definition holomorphic or antiholomorphic
—the equations reduce entirely to the Cauchy-Riemann equations—and
presents no problems in finding all solutions. One simply considers linear
systems of divisors on the Riemann surface M .

We shall give now the gauge theoretic interpretation, in terms of the
connection 4 and Higgs field ®, of the above special cases. Since the
connection is an SU(2)-connection we may consider it as being defined
on a rank 2 complex vector bundle V' with a symplectic form (, ). The
Higgs field @ is then a holomorphic section of End /' ® K whose trace is
ZETO0. :
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Proposition (1.8). Let f: M — SU(2) be a harmonic map of a com-
pact Riemann surface, and let (A, ®) be the corresponding connection and
Higgs field. Then f is a branched conformal map if and only if det® =0.
The branch points of f are the points of M where ® vanishes. ( Since ®
is a holomorphic section of EndV ® K and V is of rank 2, det® is a
holomorphic section of K ’_a quadratic differential on M.)

Proof. The pull-back of the bi-invariant metric on SU(2) under the
map f is

g=—tr(f'df)’ = —4tr g’
= —4(tr®* — 2tr D" + tr d*).

A metric is in the conformal class of M if it is locally of the form hdzdz
with respect to a holomorphic coordinate z, so g is in this class if the
dz? and 47’ components vanish, i.e. if and only if trd> = 0. Since @
is locally a 2 x 2 matrix with trace 0, det® = —% tr®® =0 if and only if
M is branched conformal.

The pulled-back metric is now 8trd®®* and this is degenerate only
when ® = 0. Thus the branch points are the zeros of ®. gq.e.d.

In the case where detd = 0, we may define further holomorphic in-
variants. Since det® =0 and tr® = 0, we have ®° = 0. For all points
of M, ® therefore has a nonzero kernel and if ® is not identically zero
there is a well-defined holomorphic line bundle L ¢ V' with L C ker®.
Since ®° = 0, im® C ker®, so ® defines a homomorphism of line
bundles

O V/L-LeK

which vanishes at the zeros of ®.

Since V' has a symplectic form, V/L is isomorphic to L’ , thus the
homomorphism above defines a holomorphic section a € HO(M ; L’K )
which vanishes at the zeros of ®.

Consider next the holomorphic subbundle L C V. This is preserved
by d;’ and we may ask if the covariant derivative d, preserves it. The

obstruction to this is given by the section b € Q' ’O(M ; L_z) defined by
bs® = (d;s, s)
for some local holomorphic section s of L. Now,
(db)s’ = d'j(bs") = (d'id';s, s)
since s is holomorphic. But
F,=d,d;+d,d, and ds=0,
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SO

(dib)s” = (F,s, 5) = (PD"s — ®*®s, 5) from (1.7)
= (®"s, Ps) — (®"®s, s) =0 since s = 0.

Thus b is a holomorphic section of L™*K . The product ab € HO(M ; Kz)
is a quadratic differential naturally associated to the solution. In terms of
the harmonic map it is essentially the second fundamental form of the
image of M in s [18]. The section b plays another role—that of de-
termining the holomorphic structure on V. We already know that V is
given by an extension

0—-L—-sV3EZL"=0

and hence by a class in HI(M; L2) .

To find a representative in Dolbeault cohomology for this class, we take
a C* line bundle L” complementary to L and identify it with L* by
7. If ¢ is a local section of L, then we define b’ € Q% l(M ; L2) by

dit, 1y =b't".

It is easy to see that the cohomology class of »' in H ! (M; L2) measures
the obstruction to finding a holomorphic complementary subbundle in V
and hence is the extension class.

The SU(2) structure on the vector bundle V' can be described in terms
of the symplectic form ( , ) and a quaternionic structure j: V — V
which is antilinear and satisfies j2 = —1. The hermitian form ( , ) is
given by (v, w) = (v, jw).

Nowlet s bea local holomorphic section of L and cons1der the section
t=js of ]L—L in V. We have

b'e = (dt, 1)y = (d}js, js)
= (jd;s, Jjs)y= —(d;s, sy = —F.
Hence using the unitary structure on L to identify L" and L, we have
| b =-FeQ®'(M; LY

representing the extension class.
Suppose this class is trivial, so that ' = d”a for some a € QO(M ; L2) .
Then

b=-dja=d,a,
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where d'L is the (1, 0) part of the unitary connection on L™*. But
d'L'b =0 as shown above, so d'L'd,iE = 0. It follows that

/(d'La, dia):/(dZdia,a):O,
M M

SO d'LE=O, ie., b=0.

Thus the extension defining V' is nontrivial if b # 0.

We turn next to the second type of harmonic map, a map to a totally
geodesic 2-sphere.

Proposition (1.9). Let f: M — SU(2) be a harmonic map of a com-
pact Riemann surface, and let (4, ®) be the corresponding connection and
Higgs field. Then,

(i) f maps to a totally geodesic 2-sphere if and only if A is reducible
to a U(l) connection.

(ii) f maps to a totally geodesic 2-sphere, if and only if there exists a
gauge transformation g such that g2 =-1, g_ltbg =—® and g leaves
A invariant.

( Of the two criteria given here, the first is a simple gauge-theoretic notion,
but the second has more relevance when we actually solve the equations. )

Proof. Any totally geodesic 2-sphere in S3 is equivalent under an isom-
etry of S 3 to the fixed-point set of the involution g — — g_1 . The action
on the tangent bundle of S3 restricted to S* reduces the structure group
from SO(3) to SO(2) and hence reduces the SU(2) connection (the con-
nection on the spinor bundle) to U(1). Thus, pulling back to M gives a
reducible connection.

Conversely suppose 4 is reducible to U(1). We may write V = UgU"
as an orthogonal direct sum for a complex line bundle U with a unitary
connection. With respect to this decomposition the Higgs field ® may be

( ) ’
y 24

where the entries are holomorphic sections of the line bundles: « €
H'(M;K), fe H(M; UK), and ye H' (M ; U*K). Now
. BB -7 2a7—2/36)
1.10 q), q) = — ) 7 — s
(1.10) @, 9= (00 375 25 )

where we have used the unitary structure on U to identify U with U -t
However A is reducible so

_ FU 0
FA_(O _FU).
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Consequently from the equation F, = [®, ®"], we obtain
(1.11) ay = pa.

Assume now that the holomorphic 1-form « is not identically zero. Con-
sider the quadratic differential

det® = —a’ — By = 2(a@+7y) from (1.11).
87

If detd vanishes at a point to order k, then it follows that o and y
must both vanish to order %k, and since they are both holomorphic this
means in particular that k is even. Thus the zeros of the quadratic differ-
ential det® have even multiplicities 2m,, and at each of these zeros the
differential o has a zero of multiplicity m, . Therefore for some constant
/A we have

det® = Ao’

However y and similarly B have at least the same zeros as « and are
sections of UT?K and U’K respectively. It follows that U 2 must be

trivial, and f and y are themselves constant multiples of «. Thus,

holomorphically, V= U@ U, and ® is the product of a constant matrix

C and the 1-form «.

If o is not identically zero, then (1.11) also leads to 8 = 77 and
consequently from (1.10), [®, ®"] = 0, so the constant matrix is normal
and therefore diagonalizable. An eigenspace of @ defines a holomorphic
line subbundle of ¥, but since it is also an eigenspace for ®” by normality
it is also antiholomorphic, i.e., preserved by d; as well as d;' . This means
the connection A and the Higgs field ® reduce to the group U(1), or in
other words we have a harmonic map to a circle subgroup of SU(2)—a
geodesic in s2.

There only remains the case where « vanishes identically. We then

have 0
o- (0 ).

Consider the covariant constant gauge transformation g = (4 °%). We
have g_ld>g = ~®. Now consider the left-invariant connection V, =
V ,—® and the right-invariant connection V, =V ,+®. Since g 'og =
—® and g preserves V ,, we have

—1 -1
g V,g=g (V,—D)g=V, +P=V,.

Thus g represents the harmonic map f. Since g2 = —1, it maps to a
2-sphere in SU(2).
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Hence if A is reducible, f maps to a circle or a 2-sphere. Considering
the second part of the proposition, if g leaves A4 invariant, then it is
a covariant constant gauge transformation and thus reduces the structure
group from SU(2) to U(1), leading to the first part.

Remark (1.12). Locally, the equations for a harmonic map to the 2-
sphere take a more familiar form. Suppose we choose a local coordinate
in a neighborhood where det® is nonzero, such that detd = —d z2. Now
write = s’dz and y = s *dz for alocal nonvanishing section s of U.
The hermitian inner product U gives ||s||2 = h, and the isomorphism
U= U"" can be written as 5 — hs~'. The equation F, = [, ®*] now
becomes ,
F,=BB—y7=0"-h")dzdz.
Moreover, the curvature F;, of the line bundle is given by

F,=d"d logh.
Putting 4° = ¢“ we obtain the equation

1 0% u
T28z0z7 ¢ ~¢ >
which is essentially the Euclidean version of the sinh-Gordon equation. Its
relationship with surfaces of constant mean curvature in R’ is classical
[11].

The final case of a branched conformal map to S? is obtained by con-
sidering both conditions: det® =0 and A4 reducible.

Now we restrict attention to the case where M is of genus 1—a torus. In
this case, the canonical bundle K is holomorphically trivial, so choosing
a trivialization the Higgs field @ is simply a trace zero endomorphism
of the holomorphic vector bundle }'. There are three nontrivial cases to
consider according to the description above.

(a) The general case: det® # 0, A is irreducible. Here, since det®
is a holomorphic function and hence constant, ® has distinct eigenval-
ues +A4 which are constants. The eigenspaces split the vector bundle V
holomorphically as a direct sum V=L@ L".

(b) det® # 0, A reducible. In this case, as we saw in Proposition
(1.9), either we have a U(1) solution to the equations, corresponding to
a harmonic map to the circle, or the Higgs field has the form

(2

relative to the decomposition V' = U@ U” defined by the U(1) reduction
of A. Since S € HO(M; Uz), y € HO(M; U_z) and neither vanish
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because det® # 0, the line bundle U s holomorphically trivial. Thus
V=Uo®U and ® is constant under this isomorphism. The eigenvalues
+A4 of @ are basic invariants of the solution.

(c) det® = 0, A irreducible. Here, as in Proposition (1.8), we have
the kernel of @ defining a subbundle L C V', a section a € H O(M ; LZ)
defined by ®: V/L — L, and a section b € HO(M ; L_Z) measuring the
obstruction to 4 preserving the subbundle L. Since A is irreducible, b
is nonzero, and therefore degL2 <0.If degL2 < 0 then a vanishes,
so @ vanishes. But then F, = [®, ®"] vanishes and any flat SU(2)
connection on a torus reduces to U(1). Thus deg L* =0 and the section
b trivializes L*.

The product ¢ = ab is a nonzero constant which is a basic invariant
of the solution. The vector bundle ¥V is a nontrivial extension of a line
bundle L of order two by itself, as we showed above. Also, since a
is nonvanishing everywhere, ® does not vanish anywhere, and therefore
from (1.8) any harmonic conformal map is an immersion.

(d) det® = 0, A reducible. In this case, as in (c), if & # 0 then V
is a nontrivial extension of a line bundle of order 2 by itself. But if 4 is
reducible, V' is a direct sum of line bundles which contradicts this. Hence
b=0,s0 V=L@L" where 4 reducestoa U(1) connection on L, the
kernel of ®. Thus, with respect to this direct sum decomposition,

0 a
*=(o o)
with a € H'(M; L?).

Finally, having given a gauge-theoretic description of a harmonic map
to a Lie group G, and a geometrical interpretation in terms of 4 and
@ of natural constraints on the map, we may ask if every solution to the
equations

d;‘/d)=0, FA:[CI),CI)*]
on a compact Riemann surface arises from a harmonic map. Given such
a solution, if we put ¢ = ® — ®", then from the first equation d,¢ =
d, *¢=0. Thus
2 2 *
dy—¢) =F,+¢" =F,—[®,P]=0,
d,+¢) =F,+¢ =F,—[®, ®]=0.
Hence V ,+¢ and V ,—¢ are flat connections. In the case where (4, @)
arises from a harmonic map these are not only flat but #rivia/—the holon-

omy is trivial. Conversely suppose the holonomy of these two flat con-
nections is trivial, then we may find a covariant constant trivialization of
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the principal bundle P with respect to V, — ¢. The covariant constant
trivialization with respect to V , + ¢ gives, relative to the first trivializa-
tion, a map to the group G. It is easy to check now that the equations
d,p = d, x¢ = 0 make this map harmonic. Thus the ¢riviality of the
two flat connections is the condition to obtain a global harmonic map to
the group. Locally, of course, in a simply connected neighborhood, this
triviality is satisfied.

The global geometric analogue of the harmonic map which corresponds
to a general solution of (1.7) consists of patching together these local maps.
It may be described by taking the flat G x G connection on M by putting
V,— ¢ on one factor and V, + ¢ on the other and forming the flat
G-bundle associated to the right and left action of G x G on G (ie.,
considering G as a symmetric space). A solution to the gauge-theoretic
equations corresponds to a harmonic section of this flat bundle. Most of
our work will deal with general solutions to (1.7), and hence harmonic
sections, and only finally shall we consider the special conditions which
give a true harmonic map.

2. Holonomy

The relationship between solutions to (1.7) and flat connections is much
deeper than the identification of the flat connections V, —¢ and V , +¢
in terms of a harmonic map. It forms the basis of a method of solution
of the equations themselves.

We introduce an indeterminate { € C* and consider the complex con-
nection

(2.1) vV, 40—
The curvature of this connection is
F=(d,+{'®-(®) =F, - [®, ®'] sinced,®=d,d =0
=0 since F, =[P, (I)*].

Thus, when G = SU(2), we have a family of flat SL(2, C) connections
parametrized by { € C*. When |{| = 1, the connections are unitary, and
when { = +1 or —1, they are the connections arising from the harmonic
map, corresponding to the left and right invariant connections on SU(2).

This interpretation of the equations arises from many sources. It may
be regarded as part of the Zakharov-Shabat formalism, used by Uhlenbeck
[27] in analyzing the harmonic maps from S? to a Lie group, but may
also be considered as a vestige of the Atiyah-Ward twistor space method
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of solving the self-dual Yang-Mills equations [5]. The use of a 1-parameter
family of linear differential equations in solving a nonlinear problem which
we shall employ here has its closest analogue in the solution of the periodic
KdV equation [20].

Given a flat SL(2, C) connection on M and a base point, it" holonomy
describes a representation of the fundamental group

7,(M) = SL(2, C).

~

We consider the situation where M is a torus, in which case # (M) =
Z & Z . Choosing generators, a representation is then a pair of commuting
matrices in SL(2, C). Since the family (2.1) of flat connections depends
holomorphically on ¢ € C*, we have holomorphically varying holonomy
matrices H({) and H({) corresponding to the holonomy around the two
generators of 7, (M) ; they satisfy

(2.2)  detH({)=detA(()=1,  H(H) =HH({).

The holonomy matrix H({) depends on the choice of base point in M,
but its conjugacy class and hence eigenvalues do not. These will be our
primary concern in this section.

Since det H({) = 1, the eigenvalues u and u ! of H({) satisfy

W =hQu+1=0,
where A({) =tr H({), and are thus given by

p = 4IA(0) £ h(0)* - 4].

This is a 2-valued function on C* with branch points at the odd-order
zeros of A({ )2 —4 . We shall show next that there are only a finite number of
these. This finiteness theorem, which is essential for reducing the harmonic
map equations to algebraic geometry, is not simply a consequence of the
compactness of the closed curve around which we are solving the ordinary
differential equation given by the covariant derivative (2.1). It involves
the full two-dimensional compactness of the torus. Indeed the analogous
result for the periodic KdV equation does not hold—one needs in general
hyperelliptic curves of infinite genus [20] to find all periodic solutions.

Proposition (2.3). Let (4, ®) be a solution to (1.7) on a torus M,
and let H({) and H(() be the holonomy matrices of the flat connection
V,+ '@ — (D" around two generators of m\(M). Then the function
h(C)2 — 4, where h({) =tr H({), has a finite number of odd order zeros in
c*.
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Proof. Let { ={, bean odd zero of h(C)2—4 andput ¢ ={-{,. The
holonomy matrices H(¢) and H(¢ ) have power series expansions around

C=C0:

Hn=Y 4t, Hp=Y Bt
i=0 =0
Now h(CO)2 =4 so tr4, = £2. Assume for the moment that tr4, = +2.
If ()" — 4 has azero at { = {, of order (2m + 1), then

(2.4) Q+i(trd)+L(trd) +--) =4+ g(1),
where g(0) # 0. Thus, equating coefficients,
(2.5) trd4,=0, 0<i<2m+1, and trd, ., #0.

Suppose 4, = 1. Then since
det(dy + tA, + Ay +--) =1,

we have

1+ i £(tr 4,) + det (it%) —1,

i=1 i=1

and using (2.5)

(2.6) " (e d,, )+ -+ det(tA, + £ A, + ) = 0.
If 4,=0 for 0 <i<k,but 4, #0 then from (2.6)
£ Ay, )4+ (det 4) + = 0.

Since trd,, , # 0, there must be a nonzero term in det(tkAk +---) to
cancel this coefficient, hence 2m+ 1 > 2k . This means that the coefficient
of , i.e., det4, , must vanish, since it is now the lowest order term.
On the other hand, since k < 2k < 2m + 1, we also have from (2.5) that
trd, =0.

Thus A, is nonzero but detd, =tr4, =0, so A4, is conjugate to a
matrix (J1). If A, is not the identity, then since it has equal eigenvalues

00
+1, it must be conjugate to a matrix () 1). Thus in either case the first

01
nonscalar coefficient in 4,414, +t2A2+- -+ always has a unique eigenspace.
Now the holonomy matrix H(t) = Y;2, B;t' commutes with H(t), so

B, commutes with the first nonscalar coefficient of H(¢). Thus B, must

be of the form
g (2 b
07 \0 a
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or, since detB, =1,

1 b
2.7 BO=:|:<O 1).
Hence 4, and B, have a common eigenspace with eigenvalue 1 for 4
and +1 for B,. Taking into account the omitted value tr4 = -2, we

have the possible eigenvalues +1 for 4, and B, .

We pass now to the interpretation in terms of the connection V +{; o
- {0(13* on the vector bundle V. If we tensor V' with a suitably chosen
flat line bundle of order 2 to remove the sign ambiguities in 4, and B,
then we have a flat SL(2, C) connection such that the holonomy matrices
have a common eigenspace with eigenvalue +1. This gives a globally
defined covariant constant section s of ¥V, and hence a solution to the
two equations

ds+{ '®s=0,
d;'s - {O(D*s =0.
Now suppose that d;s +{ ~!'®s = 0 has a nonzero solution for all { €

C*. It does in particular then for ¢ = e . We consider the flat unitary
connection

(2.8)

V,=V,+e ‘o,
so that dys =0. Since F, = d,d, +dyd, =0, we have d,dys =0 and
hence using the hermitian inner products,

(2.9) (dys, dys) =d'(dys, s).

Integrating over M and using Stokes’ theorem we deduce (this is the usual
Weitzenbock vanishing argument) that dgs = 0 and so s is covariant
constant.

Now since s is covariant constant, the SU(2) holonomy leaves fixed a
vector and is then trivial. We thus see that if d; + ¢ '® has a nontrivial
kernel for all |{| = 1, then the holonomy of V ,+ e D — e ®" is trivial
for all 8, so H({) = H({) = 1 on the unit circle. By holomorphicity,
H()=H() =1 forall {eC". In this case #({) =2 and there are no
odd order zeros. We assume, then, that the elliptic operator d; +¢ 1o is
generically invertible. It depends holomorphically on ¢ for { € C* U o,
so there are only a finite number of values of { with [{| > .1 for which
(d’, + ¢ '®)s = 0 has a solution.

Similarly, applying an analogous vanishing theorem, the elliptic opera-
tor d'; — {®" which is holomorphic for [{| < | has only a finite number
of values for |{| < 1 for which it is noninvertible.
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Thus if (2.8) is to hold, it can do so for only a finite number of values
{, > proving the proposition.

Proposition (2.3) concerned the holonomy around one generator of the
fundamental group. This gave a finite number of points in C* which were

branch points of \/A({)* — 4. In fact, consideration of the other generator
gives the same branch points:

Proposition (2.10). Let (4, ) be a solution to (1.7) on a torus M,
and let h(C), h({) be the trace of the holonomy of the connection (2.1)
around the two generators of n\(M) = Z® Z. Then the odd zeros of
h* () — 4 are also odd zeros of h*() — 4 unless H({) = +1.

Proof. From the proof of Proposition (2.3), formula (2.7) shows that,
at an odd zero of hz(é') -4, izz(C) — 4 also vanishes. If H({) # +1 it
vanishes with finite order at { = {,. Then putting ¢ = { —{;, suppose the
order is 2n, so that

B —4=1r"3(1), where 2(0)#0,

and the eigenvalue j satisfies j = A+¢"\/g(t)/2. This has a power series
expansion in f.

Let K denote the field of fractions of convergent power series. Then
H(t) is a 2 x 2 matrix with both entries and distinct eigenvalues in X,
and therefore has a basis of eigenvectors in K . '

Now H(t) has entries in the same field and commutes with H(f). It
therefore preserves the eigenvectors of H(¢), and they are consequently
eigenvectors of H(¢). Thus H(¢) has eigenvalues in K .

However {, is an odd zero of W —4,s0 h* —4 = tzmHg(t) , and
u=h=xt"""? /g(1)/2, which does not lie in X .

Thus /* — 4 must have an odd zero too. q.e.d.

We must next examine the behavior of A({) as { tends to zero or in-
finity: tol invoke algebraic geometry by compactifying C* to the projective
line CP .

3. Limiting behavior of the holonomy

We consider in this section the behavior of the holonomy of the flat
connection V , + C“I(ID —{®* as { — 0 or oco. In fact we need only
consider one limit, as follows. The SU(2) structure on the bundle V' gives
it a quaternionic structure j: V — V', an antilinear map such that j2 =
—1. Since the connection 4 preserves this structure we have j_IV 4J=
V ,, and since @ takes values in the complexification of the Lie algebra



646 N. J. HITCHIN
of SU(2) we have j '®j = —®*. Thus

NV T 010 =V, -7 0" + 1o,
and consequently the holonomy matrix satisfies
(3.1) JSTHQ =HT ),

or equivalently H(Z_I)* = H(C)_l. The trace of the holonomy 4({)
thus satisfies the reality condition A(Z ') = A(C) which determines the
behavior at oo in terms of the behavior at 0. Consider then the situation
as {— 0.

To introduce the method, we begin by considering the exceptional case
where H({)=1 and H({)=1 (after tensoring by a flat Z,-bundle).

Proposition (3.2). Suppose that (A, @) is a solution to (1.7). Then the
holonomy of the flat connection V , +{ 1o — (@ is trivial forall {eC”
if and only if (A, ®) defines a conformal map of M to s2,

Proof. We make use of the (0, 1) part of the connection dg ~{D*
which depends holomorphically on { and at { = 0 gives the dz-operator.
It defines a holomorphic structure V., onV, depending holomorphically
on {eC.

The flat connection V , + ¢ o - {®" is trivial so we have for each
{ € C* two linearly independent covariant constant sections v, and v,
of V. These are in particular holomorphic with respect to d;’ —¢P" and
holomorphically trivialize Vc . Thus any holomorphic section v of Vg
is a constant linear combination of v, and v, and so is also covariant
constant.

The holomorphic structures Vg define a holomorphic bundle ¥ on
M x C, and the direct image sheaf p, ¥ by projection onto C is a locally
free sheaf—a holomorphic vector bundle W . The fiber W for { #0 is
simply HO(M 3 V) = C? and at { = 0 is a 2-dimensional subspace of
H(M; V).

Over some neighborhood of 0 in C we take a holomorphic section s of
W, with s(0) =5, # 0. Foreach {, s({) is a section of V', holomorphic
with respect to dZ —{®" , but also as noted above, covariant constant with
respect to V , + (Tl — @ for £ #£0.

Writing s(z, {) = s,(z) + {s,(z) + Czsz(z, ), with s,(z, {) holomor-
phic in {, we therefore have

(' + 7 @) (s, + &5, +¢s,) =0 for L eC”,
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and hence
(3.3) ®s, =0,
(3.4) d's,+®s, = 0.

From (3.3) det® = 0 and since &’ =0 ., ®s, lies in the kernel of ®.
Thus from (3.4) a’; and a’g preserve the kernel of @, so the connection A
is reducible. This is case (d) of §1, and thus defines a holomorphic section
of a flat S*-bundle. Since however the holonomy at { = 41 is trivial, it is
an actual map to s2. Conversely the connection V ,+{ “'o—¢(d* on M
arising from a conformal map to S? is the pull-back of the corresponding
connection on $° which clearly has trivial holonomy since S? is simply
connected. q.e.d.

We turn then instead to the case of nontrivial holonomy which must be
of type (a), (b), (¢) and (d) which we treat now in turn.

Proposition (3.5). Let (A, ®) be a solution to (1.7) with det®
= —22dz* # 0 and A irreducible, and let w() and p(C) be eigenval-
ues of the holonomy of the flat connection V , + ¢ o - D" around the
generators of m,(M). Then there is a punctured neighborhood of 0 € C in
which

tlogu() =A™ +a+¢b(0),
+logii(¢) = At +a+¢h(),

where b({) and b({) are holomorphic.

Proof. We consider as above the holomorphic bundle ¥ on M x C
given by the holomorphic structure a’;’ — {®*. We now know also that
the holonomy is not identically trivial. From Proposition (2.3) we can
deduce that there are no odd order zeros of A({ )2 — 4 in some punctured
neighborhood U of 0 in C. This means (as in the proof of Proposition
(2.10)) that we can locally define holomorphic eigenvalues and eigenspaces
of the holonomy matrices, and therefore write

(3.6) V,=L,&L;,

where L, and LZ are the common eigenspaces of the two holonomy ma-
trices. (Note that this decomposition may not hold globally on U because
the two eigenspaces may interchange as { passes around 0.)

We may also assume, from the proof of Proposition (2.3), that the
operator d; — {®" on Vi or ¥, ® L, where L is a line bundle of order
2, is invertible for { € U. Since the bundle LC has a flat connection
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defined on it, it is necessarily of degree zero, hence the invertibility of this
operator implies that Lf is not holomorphically trivial.

Now consider the bundle End, Ve of trace free endomorphisms. From
(3.6) this has a covariant constant decomposition

End ¥V, =L;@loL;’

with respect to the connection V ,+{ oo,
The covariant constant section of End, VC which splits VC as a direct

sum is holomorphic, and since Lé is holomorphically nontrivial it gener-

ates the 1-dimensional space H 0(M ; End, Vg) .

We now have the information that the eigenspaces of the holonomy are
determined by the holomorphic structure of V, alone, and so we proceed as
before using the regularity of the holomorphic structure on V, as { — 0.

Take the bundle ¥ on M x U and consider the direct image sheaf of
End, 7 . Since for { # 0, dim HO(M ; End, VC) = 1, this is a holomorphic
line bundle on U and we take a local holomorphic section

2
w(z, ) =wy(z)+ Ly, (2) + (2, )

with y, holomorphic.

For { # 0, this is a covariant constant, hence

- 2
(dy+ 7 D) (o + Ly, + Cwy) =0,

which gives
(3.7) (@, w]=0,
(3.8) dyyy +1®, y,1=0.
Now let z be a uniformizing parameter on the torus A/, so that dz is
a holomorphic 1-form. We may write ® = ¢ dz where, since det® #£ 0,
the holomorphic endomorphism ¢ has eigenvalues =4, and V = Lg L,
the eigenspaces of ¢.

From (3.7), w, is a constant multiple of ¢ which by scaling the section
we can take as equal to ¢. Now

dety = det(p+ (y, + C'wy) = —2* — {trow, + -,

and since 4 # 0, if { is in some neighborhood of 0, the eigenvalues of ¥
are holomorphic in {. The corresponding eigenspaces of y are LC and
LZ , and so these extend holomorphically as { — 0 to the eigenspaces L
and L" of ¢. The line bundle LC therefore extends over { = 0.
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Let s(z,{) = sy(2) + {s,(2) + Czsz(z, {) be any local nonvanishing
holomorphic section of this line bundle. Then since LC is preserved by

the connection V , + Tl - et

- 2

(d'+ T D) (sy + L5y + Usy) = O(sy + L, + Cs,)
for some (1, 0) form & holomorphic in z—the connection form of the
flat connection on L.

Setting 6 = {"'Adz + «, we obtain
a(sg+ 85y +0s)) = d'ysy + s, — As,dz+ Cdlys, + -

Thus o is holomorphicin { € C.
At { =0, we have a = q,, where
aySy = dySy+ (¢~ A)s, dz.
Note that (¢—A)s, lies in the —A eigenspace of ¢, thus «, is a connection
form for the connection on L (where ¥V = L& L") obtained by projecting
(with respect to this eigenspace decomposition) the connection A4 into L.
Since « is holomorphic, the connection is flat.

We have succeeded, then, in finding a connection form 6 for LC . We
represent now the torus M by C/I" where T is the lattice generated by
z=1 and z =7 (7 in the upper half-plane), and use the line segments
[0, 1] and [0, 1] to give generators of the fundamental group. Integrating
the form

6 = C_lldz+a0+Cal 4
over these segments we obtain the proposition.

Proposition (3.9). Let (A, D) be a solution to (1.7) with det®
= —A*dz’ # 0 and A reducible. Then there is a punctured neighbor-
hood of 0 € C in which the eigenvalues u({), and j({) of the holonomy
satisfy

+logu() =A™ +ikn + (b(L),
+logi(l) = At¢ +ikn+ (b)) (k. kew),
where b(() and b({) are even holomorphic functions.

Proof. This is a special case of the previous argument, and so we only
need to investigate the extra information which we have from the reducibil-
ity of 4. By (1.9) we see that there exists a gauge transformation g with

g> = —1 such that g preserves A, and g~ 'dg=-D.
Applying g to the flat connection we obtain

gV + 0@ =V, o+ D
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Thus the eigenvalues of the holonomy at { are the same as at —{ .
From (3.5) we have

log u(¢) = AL~ +a+ (b(0),
log u(—¢) = =A™ +a—{b(=0).

We must therefore have /L({)_l = u(-{), and so a = ikn for k € Z and
b({) is even. :
Thus in this case the flat projected connection on L has holonomy

group Z, . »
Proposition (3.10). Let (A, ®) be a solution to (1.7) with det® =
0 and A irreducible, and let ¢ = —x*dz" be the quadratic differential

invariant. Then there is a punctured neighborhood of 0 € C in which the
eigenvalues u({) and a({) of the holonomy satisfy
+logu() = k(™ +ikm + {76,

tlogi(l) = w1l P v ikn + (PH(CMY)  (k,kez).

Proof. Here we follow the argument of Proposition (3.5) up to (3.7)
and (3.8), for until then we made no use of the determinant of ®. We
have a section y of End, V, over M x U where

2
=y, +Cy, +{v,.

From (3.7), since ® = ¢dz is nonzero, ¥, can again be taken to be ¢.
Now, however

dety =detd — {tr(gpy) + - = —{tr(dy) + -+,

and we cannot find eigenvalues of ¥ holomorphic in { if tr(¢y,) is
nonzero. In fact this coefficient is always nonzero in this case, as follows.

If we choose a local holomorphic trivialization of V' so that ¢ = (J}),
then the connection 4 has connection matrix

adz = (a b >dz.
¢ —a

d,¢ =—la, ¢ldz = (¢, y,1dz.
Thus a = —y, + k¢ and —tr(¢y,) = tr(¢a) = ¢, the lower off-diagonal
term in the above connection matrix. This measures the failure of the
connection A4 to preserve the line bundle L = ker ¢. We have here tacitly
trivialized L, and invariantly speaking, tr(¢a) is a quadratic differential:
it is the second fundamental form c¢ mentioned in §1. In particular it is

From (3.8),



HARMONIC MAPS 651

nonzero if A4 1is irreducible, so we have dety = ¢{ +--- for a nonzero
2
constant ¢ = —k* .
2
Now set n° ={, and we have

(311) detw:—x2n2(1+aln2+...)'

Thus i has well defined holomorphically varying eigenvalues
+rn(l+ %alnz +---) onan openset U ¢ C which double covers U c C.
Consequently there is a well-defined holomorphic line bundle L _ over
M x U which for n # 0 is an eigenspace for the holonomy of the flat
connection V , + ni® — Pt .

Let s(z, ) = s,(z) +ns,(z) + nzsz(z , 1) be a local nonvanishing holo-
morphic section. Then since s is an eigenvector of y,

2 2
(S+0" Wy + 0 u)(so 08, + ) =ren(1+Ja,n - )5+ s, + ).
Thus
(3.12) s, = Ks,.

Since for # # 0, the line bundle is preserved by the connection and we
also have

(3.13) (af:1 + n_2<1>)(s0 +ns 4+ )=0(sg+ns, +)

for some (1, 0) form 8. Writing

a, a_
0:—2+T+do+"' 5

we have a_,s, = ®s;,. But det® = 0, so the only eigenvalue of @ is
zero, hence a_, =0. _
We have, further, a_,s,+®s, = 0. But then from (3.12) a_, = —xdz

and so
kdz

0=- +a,+--.

Integrating over the segments giving the generators of x,(M), we have

ilogﬂ(ﬂ)=—%+a+"-, ilogﬂ(n)=—%£+&+--~.

Now since the flat connection V , + n_2<D - n2<D* depends only on n2 ,
we must have

logu(—n) = £log u(n) + 2kni,
i.e.,, a=-a mod2zniZ,so a, acniZ.
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Proposition (3.14). Let (A, ®) be a solution to (1.7) with det® =0
and A reducible. Then the eigenvalues u({) and () of the holonomy
are constant.

Progf. We follow the proof of (3.10) but now, from case (d) of §1, the
connection matrix 4 has the form

a b
adz = (0 —a) dz,

and hence dety = ¢{" + --- for some nonzero constant and n > 1.
Repeating the argument, we have

2 4 2
@+Tw +0 W) (o +ns, +--) =k (L+5am" - )sg+ns, +---),
and so
(3.15) ®s, =0 and ®s =0.
Considering (3.13), we have '
(d1'4+77_2<I>)(s0+r1s1 +-)=0(sy+ 15, +-),

but then from (3.15), 6 is holomorphic in 7, and consequently so are
u(n) and ji(n). Hence A({) = u+ 1~ is a holomorphic function on
CP' and so constant. Therefore u(¢) and @({) are constant.

Remark (3.16). Note that, as a consequence of these propositions, if
#({) = £1, then so is ji({) and we are reduced to the situation of H({) =
+1 and H({) = £1, the trivial case of a conformal map to the 2-sphere.

In particular, in Proposition (2.10) either hz(C) —4 and izz(ﬁ )—4 are both
identically zero or both have exactly the same odd zeros.

4. The hyperelliptic curve

We now have enough information to relate a solution of (1.7), and in
particular a harmonic map, to an algebraic geometric object—a hyperellip-
tic curve. In §2 we studied the eigenvalues u({) and j({) of the holonomy
matrices of the flat connection V , + ¢ ~'® — ¢®" and showed they had a
finite number of branch points in C*. In §3 we saw that if det® # 0, then
u(¢) and i({) are single-valued in a punctured neighborhood of 0 (and
o0 ), and if detd = 0, then they are single-valued in a double covering of
such a neighborhood. We begin by defining a smooth hyperelliptic curve
associated to this data.

Definition (4.1). If (4, ®) is a solution to (1.7) on a torus M, and
Qp, o, O, al_l >t @ ! are the odd order zeros of h(C)2—4 as in §2,

n
then we define the associated Ayperelliptic curve X to be:
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(1) if det® # 0, the double covering of CP' branched over a,
-1

-1 —

an;al 9"'5an ’
(ii) if det® = 0, the double covering of CP' branched over g,

——1

1
a,, @ , - ,a, ,0 and oo.

no

We denote the covering map by =x: $ - cP.

By the very definition of the curve, the functions u({) and i({) are
single-valued on £\ n_l{O, oo} . These are the eigenvalues of the holon-
omy matrices H({) and H({). We consider next the eigenspaces of the
holonomy.

Fix a point x € M , and consider the holonomy matrix H ({) obtained
by parallel translation of the flat connection V , + { ~'¢ - ¢®* around
closed curves through x in the homotopy class of the corresponding gen-
erator of z,(M). On £\ 77'{0, oo} we define a holomorphic vector
bundle, the eigenspace bundle, by the property

E, (&) C ker(H, (&) — u(&)) foréef.

If the holonomy varies nontrivially (i.e., excluding the case detd = 0,
A reducible), this is a line bundle on £\ 7z~ '{0, co}. Moreover, by the
analysis of the limiting behavior as { — 0 in §3, the bundle actually
extends over { = 0 to become an eigenspace L, of ® :V, -V ®K, .
We therefore obtain a holomorphic line bundle E_ defined on the whole
curve . Since H_({) and ﬁx(C) commute, the bundle £, could equally
be defined by considering holonomy around the other generator.

The eigenvalue u({) has an essential singularity at n‘l{O, oo} accord-
ing to Propositions (3.5) and (3.10), but from those results the differential
form 6 = dlogu = du/u is a meromorphic form with a double pole at
77 '(0) and 7~ '(co) and zero residue—a differential of the second kind—
and hence an algebraic object.

We now prove some basic properties of the hyperelliptic curve:

Proposition (4.2). Let T be the hyperelliptic curve associated to a solu-
tion (A, D) of (1.7) on a torus M. Then:

(i) £ has a real structure ( an antiholomorphic involution) p: £ —%
which commutes with n and induces the real structure { — € on CP',

(ii) the hyperelliptic involution ¢: 3 — ¥ which interchanges the branch-
es of the covering commutes with n and has no real fixed points,

(iii) the differentials 6 and 0 satisfy
c’0=-60: o6=-0; P 0=-0; po=-0,
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(iv) there is an isomorphism j between the bundles (6p)"E_ and E_,
such that j2 =id,
(v) each period of @ and @ is of the form 2inm for some n € Z.
Proof. (i) The abstract definition of a branched double covering may
be given a more concrete realization which helps to define the curve and
its associated structures. If we put

p(0) = (1" [[@L - (@@ + Dl +a),
i=1
if det® #0, [ =n, and

CH = e+ D +a,),

if det® =0 and 1=n+l,then
— 2
(4.3) pCH=T"p0D,

so p may be considered as a section of the line bundle @ (2/) over cP',
real with respect to the real structure ¢ — ¢

Consider the total space of #(/) and the tautological section » of & (/)
over it. The hyperelliptic curve £ is then the zero set of the section 172 -p
of &(2l) over &(l). The hyperelliptic involution ¢ is thus just fiberwise
multiplication by —1 in #(/), and the projection 7 simply the restriction
of the projection of the line bundle # (/). In terms of the affine coordinate
¢ on CP', the equation is ;72 = p({) and o(y, {) = (-n,{). The real
structure on CP' extends to #(/) for any [ by

—— -1
p(n, O)=m¢ ¢ );
this clearly commutes with ¢ and 7, and from (4.3) takes the curve into
itself,

(i1) The fixed points of ¢ are given by n = 0, i.e., the zeros of p({),
the branch points of the covering. From (2.7) there are no odd order zeros
of h* — 4 on the circle, so a; # ai_l , hence there are no real fixed points
of 7.

(iii) From (3.1), u(f_l) = ﬁ(C)il . However, the flat connection V, +
'@ — (@ is unitary for ¢ =€, so

0, -1, i0
ey =m ("),
hence u(f_l) =u(¢)”" forall ¢, so that p"u =1 )

Thus p*0 = p*du/u = —du/i = —0 and similarly for 6.

-1
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By the definition of the curve, ¢*u = u~ ', hence 6“6 = o*du/u =
—du/u = -6 and similarly for 4.

(iv) Consider the quaternionic structure j: V, — V, andlet E ({) C V,
be the eigenspace bundle. Thus if v € E (£), then H({)v = u({)v and

—1 —_—

JTHQ (G ) =T (v = w@))

1
v,

SO

HT ) v=wu@j 'v from (3.1)

or
1 1

HT Y =@ Y "' from (iii) above.
This implies that if v € E (), then iTlve E (0p¢&), hence j: (op)°E,
— E_ is an antilinear isomorphism satisfying j2 =-1.

(v) From (3.7) and (3.10), & and & have zero residues at their poles;
thus they have well-defined integrals over a basis for H, '(ﬁ; Z) , their pe-
riods. On the other hand 8 = dlogu and u is a well-defined function on
2\ n_l{O, oo} . Thus the periods are differences of values of the logarithm
and take values in 27iZ. Similarly for 6.

This final property imposes a severe constraint on the hyperelliptic
curve.

5. The spectral curve

The hyperelliptic curve £ of §4 will define the hyperelliptic functions by
means of which we shall solve the harmonic map equations, but it will be
more convenient to deal with another, possibly singular, curve £ of which
$ is the normalization. There are two phenomena which demand the
introduction of this curve. The first is the consideration of a continuous
family of hyperelliptic curves corresponding to solutions of (1.7) on the
torus. If within such a family two branch points coalesce, then we would
expect a singular hyperelliptic curve to be the limit. Secondly, we have not
determined the degree of the eigenspace bundle E, . The introduction of
the spectral curve £ provides a natural answer to both problems.

Consider the eigenspace line bundle E_ on $. Both E_ and o"E,_ are
subbundles of the trivial bundle £ x V. , and evaluation of the symplectic
form (, } on V defines a holomorphic section w of the line bundle
E'®0'E;.

Now « vanishes at those points of £ at which E.CV, and o E C
V. coincide. This certainly happens at the branch pomts but we must
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also consider the other cases of coincidence, together with questions of
multiplicity.

Suppose, then, that @ vanishes at a point &, which is not a branch
point. Let #n(¢;) = B, € cP! and suppose f; # 0, oo. Choose a local
parameter ¢ on CP' such that =0 at B;. Then the holonomy matrix
H(t) has a power series expansion in ¢. If w vanishes to order m,, then
we may find local holomorphic trivializations of the two eigenspace line
bundles in ¥V of the form

(5.1) v (1) =vg(t) + 7 u(t),  v,(0) = vy(0) — Mu(r),

where w(v,(0), u(0)) #0.

Now v,(¢) and v,(#) are local trivializations of the eigenspace bundle
E_, on the two branches of ¥ over this coordinate patch, but if we con-
sider the singular curve s> = /™ in C’, then vo(t) +su(t) e V, is a
nonvanishing function on the singular curve which agrees with v,(¢) and
v,(¢) on the two branches s = ¢™ and s = —¢"".

If we regard the hyperelliptic curve (as in the proof of (5.2)) as given
by the equation n2 = p(¢) in the total space of the line bundle #(/),
then we may also consider as above the eigenspace bundle as defined on
the singular curve 7° = (¢ — /)’i)zm"p(C) in the total space of &(I + m,).
Continuing with the zeros ¢, --- , {, of w which are not branch points,
we have the singular curve

k
(5.2) | n’ =11 - 8)"p(0)

i=1
in the total space of &(/ + Zli(:l m;).

The section @ may vanish also at the branch points with multiplicity
greater than one, but it must necessarily be odd. Suppose over each branch
point «; (and then also at its conjugate al.—l ) @ has multiplicity 2n,+1.
Then a similar argument shows that E, is defined on the singular curve

!
(5.3) = TJ¢ —ap™ (& —a )" )
i=1

in the total space of @(/ + Zle 2n,).

Note that the analysis of §3 shows that { = 0, oo does not contribute
multiplicities to @, and hence these points never produce singularities in
this manner.

Putting (5.2) and (5.3) together we have:
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Definition (5.4). If 772 = p({) 1is the hyperelliptic curve associated to a
solution (4, ®) of (1.7), and the section @ of the line bundle E; ®c"E,
vanishes with multiplicity 2n; + 1 at the branch points «; and ai_l and
with multiplicity m; over the remaining points §,,---, ., then the
spectral curve X is the curve in the total space of @ (/+2 Zf.zl ni+Zf:1 m;)
defined by the equation

(5.5) n" = p(0)a)r(Q),

where ¢({) is the section of Z'(4 Zi‘=1 n;) which vanishes with multiplicity
! (1<i<),and r({) is the section of
& (2 Zle m;) which vanishes with multiplicity 2m; at n(g,).

Remarks. 1. Clearly we would expect generically that the only points
where the eigenspace bundles coincide are the branch points, and there
with multiplicity one. In this case the hyperelliptic curve and the spectral
curve coincide.

2. Since the eigenspaces of the holonomy at different points x, y € M
are related by parallel translation of the connection V , +( o (D" for
{ # 0, oo, the spectral curve is in fact independent of the point x used
in its definition.

The spectral curve X is defined by an equation of the form nz = P({)
in the total space of & (n) where P is a section of &(2n) on CP' and
n is the tautological section of &'(n). lts arithmetic genus p is given by
the adjunction formula in the surface & (n):

2—2=KC+C’=—-4-2n+4n=—4+2n,

and hence p=n—-1.

Its geometric genus g is the genus of its normalisation, and applying
the adjunction formula for £ in & (/) we have 2g —2 = —4 + 2/ and
hence g=/-1.

In (5.4) we had

2n; at the branch points «;, @,

k ! ! k
2n =I+Zmi+22ni =Z(2ni+ 1)+Zmi,
i=1 i=1 i=1 i=1
which is the sum of the multiplicities of the zeros of w. Since w is a
section of the line bundle E, ® ¢*E, , we deduce that

(5.6) degE.=n=p+1.

Moreover, as we have seen, £ may be considered as a line bundle defined
on the possibly singular curve X. Its degree therefore depends only on the
arithmetic genus p of XZ.
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Applying the holonomy matrix H(t) to (5.1) we see that the eigenvalues
u;(t) and pu,(1) = ul(t)_l may be written in the form:

(5.7) 1 (1) = po(t) + 170 (1), () = () — " (2),

and again p(t)+sv(t) is a well-defined function on the singula- curve s =
™ . Tt follows that u is a well-defined function not only on 3,7~ {0, oo}
but also on the spectral curve X\ ! {0, oo}, and that the differentials 6
and 6 may also be considered to exist on X.

All the data of Proposition (4.2) can then be transferred to the spectral
curve X together with the additional fact that deg E; =p+1 where p is
the arithmetic genus of X.

Note that in a neighborhood of a point of the hyperelliptic curve )
which maps to a singular point of the spectral curve X with multiplicity
m,

u(t) = (1 + 1" (1))

and so 6 = du/u has a zero of order (m —1). So also does 6 = dji/u,
derived from the holonomy around the other generator. The differentials
@ and 6 are however linearly independent; for otherwise from the real-
ity property of Proposition (4.2) there would be a real linear relationship
between them, but considering the principal parts at { = 0 as in Proposi-
tions (3.5) and (3.10) this would give a real linear relationship between 1
and 7. Since 7 is in the upper half-plane, this is impossible.

This linear independence imposes a constraint on the singularities of the
spectral curve. For example, suppose the geometric genus g of the spectral
curve is zero. The hyperelliptic curve £ is then given by nz = p({) where
p({) is a section of & (2) (a quadratic polynomial) on CP'. If det® #0,
then 0 and oo are not zeros of p({), and a differential with zero residue

at 0 and co and double poles there and satisfying 6*a = —a is of the
form
_(@a+b)d
¢’

using (7, {) as affine coordinates.
Putting in the reality condition p*a = —@, we obtain & =@ and hence,
by using the principal parts of 8 and 4,

(A + A S 5 _ (ht +TATE) dE

¢ n’ g
These have common zeros only if T = T, which is impossible for 7 in the
upper half-plane.

0:
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If det® = 0, then ¥ is given by n2 = {, and the differentials with zero
residue, double poles and satisfying ¢" o = —a are of the form
_(a+b0)d¢
Lo
and clearly any two differentials of this form with common zeros are lin-
early dependent.

Thus if g =0, 6 and 6 have no common zeros and so the spectral
curve has no singularities. The hyperelliptic curves which yield soliton
solutions of the KdV equations are all rational curves with double points,
S0 we may say by contrast that there are no pure soliton solutions for the

harmonic map equations of the torus to S3.

6. An example—the Clifford torus

The simplest example of a harmonic map from a torus to S 3 s provided
by the Clifford torus. This is an embedded minimal surface in S?, in fact
the only known embedded minimal torus [18]. It is an orbit of the maximal
torus of SO(4) acting on S?, of maximal area. Analytically, the harmonic
map is defined by g: 5’ x ' - SU(2), where

. . 0 i

(6.1) s’ e = (S L)
This is clearly a square torus—its conformal structure is defined by 7 =1
in the upper half-plane. From (6.1), we obtain

. i do—dé e~ "4 + dg)
62) & dg=3 (e"<"—¢>(d0 +dg)  —dO+do >
We are working here in the gauge provided by the left-invariant trivializa-
tion, so that the connection matrix of V, is zero and from (1.4) of V is
g 'dg. Thus the connection matrix in this gauge for V = %(V LtV
is %g_ldg. The difference V, -V, = g—ldg = 2¢ according to the
notation of §1. Thus

(6.3) O-0 =¢=1g"'dg,

(6.4) (@ +0") =+1g7dg.

Now z = 6+i¢ is a uniformizing parameter on the torus and *dz = idz,
so *(dO+id¢) = i(d6 +id¢) and xdf = —-d¢, *d¢ = df. Hence,
from (6.2) and (6.4),

o [ —de—d8 eV dg+as)
(6.5) 1(@+D)=4 (ei(e—d))(,d(ﬁq_dg) d¢+do ) ’
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and thus from (6.2), (6.3) and (6.4)

1( —(1-0)d - (1+ide e "1+ i)do - (1—i)d¢))

2= 7N+ N~ (1= )de) (- )d6 + (1 +)do

b

and the flat connection V, + ¢ ~lo - {®" has connection m? :ix

A=leg7ldg+ 7o (o
(6.6) =@+ - (D" from (6.3)
=(1+{He -1+ )@
Conjugating by the SU(2)-valued function

. o092 g
= 0 ez(@—tﬁ)/Z

gives the connection matrix h~'dh+h~' 4k, which is the constant matrix
6.7)
(—5(d6—d¢) 0 )
0 5(d6 —do)
1 — (1-0do—-(1+ide (1+i)do—(1—-i)deo
(1+¢ )< (1+1)d6 — (1 - i)dg (1—z’)d0+(1+i)d¢)
B 1(1 +0) <—(1 +0)d0 — (1 —-id¢ (1-0do—(1 +i)d¢)
8 (1-0d0—(1+i)d¢ (1+)do+(1—i)d¢

Note that A(8, ¢) is a two-valued gauge transformation of the trivial bun-
dle:

(6.8) h(6 +2nm, ¢+ 2nn) = (-1)"".

ool

Geometrically, this means that (6.7) is the connection matrix for a con-
nection on the bundle obtained after tensoring with the flat Z,-bundle on

M corresponding to the element of H l(M ; Z,) given by (6.8).
Consider now the flat connection restricted to the first factor in M =
S' x §'—the circle with parameter 6. We have

Vza‘%+(‘é/2 )+ (g (%)

1 ( +l) (l—i) _d

and since B has constant coefficients, the holonomy matrix is given by

(6.10) H({) =exp2nB({),

(6.9)
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and the eigenvalues by uil (§) =exp2nv({), where +v({) are the eigen-

values of B({), so

VA(8) = — det B(Q).

From (6.9)
detB({) = — (=4 — 21+ - D)+ 51+ 01+ 1)
~ A+ THA+i) - LA+ 01 - )
= — (-5 =4+ U= N5+ A+ O+ 1)),
SO
(6.11) VO =-i -0

Similarly, considering the holonomy around the S' factor with parameter
¢, we obtain eigenvalues ﬁil ({) = expx({), where

(6.12) 70 =47+
From (6.11) and (6.12) we see that the only branch points of v and & are
at { =0 and { = oo, and hence A({)>—4 = (¢" —e™")* has no odd order
zeros for { € C*. The Clifford torus is however conformally (actually
isometrically) embedded in s? , s0 det® = 0, and the nonsingular model
3 of the spectral curve is defined from §4 by taking the double covering
of CP' branched over 0 and co. This is another copy of the projective
line with affine parameter n2 ={.

On £ we have the meromorphic differential 6 defined by 8 =du/u=
2ndv . Putting { = n , (6.11) gives

(6.13) —2nfd( —>—27r\/;(1+’1 ) dn,

and similarly

~ i i
(6.14) 0 =2n g(l_F) dn.

7. The eigenspace bundle

We have seen in §5 that the eigenspace bundle E_ corresponding to
a point x € M is a holomorphic line bundle over the spectral curve ¥
of degree —(p + 1) where p is the arithmetic genus of X. We consider
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now the variation of this line bundle in the Picard group H : (Z;0%) of
the equivalence classes of line bundles on X as x varies on the torus
M . This variation will turn out to be /inear, and will provide effectively
a linearization of (1.7).

Recall that £ () C ¥V, is defined by the property

E () Cker(H ({) —u(), ¢,

where n({) = { and H_({) is the holonomy of the flat connection V , +
{ lg {®" around closed curves through x in a given homotopy class.

Let y € M be another point and choose a path joining x to y. Let
P (V. — V, denote parallel translation of the flat connection from x
to y along the path. Then

H,($)P, (§) = P, (O)H,(C),

y

and so
(7.1) P (E)=E,.
Parallel translation thus gives an isomorphism between E_ and E, for
(&) #£ 0, co. We therefore have a nonvanishing section of the line bundle
E: ®E, on the open set X\ n_l{O, oo} . To see what happens as { — 0
or oo, let us consider separately the two cases det® # 0 and det® =0.
In the first case { = 0 is not a branch point, and from (3.6) we can find
a neighborhood U of 0 on which the vector bundle V' on M globally
splits as a direct sum }V = LC @ LZ of eigenspaces of the holonomy of the
flat connection and which converge moreover as { — O to the eigenspaces
of ®:V — V ® K. The eigenspace bundle £ (&) is (L), or (LZ)X on

the two components U, , U, of n_l(U) cx.
From Proposition (3.5), however, the connection matrix of the flat con-
nection on L, has the form

X

Bzc_l/ldz—l—ao—l-Cal—l---- ,

so parallel translation in the line bundle LC from the point x, given by

z=Xx, +ix, €C, to the point y, given by z =y, + iy, , is of the form
—1

(7‘2) Pyx — eC 1[(y1"x1)+l(y2_x2)]h(c’ x’ y) ,

where A({, x,y) is holomorphic in { and nonvanishing. The corre-
sponding parallel translation in- L* is

(7.3) P, =e ¢ ARy ),
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The trivialization of E; ® E, by parallel translation does not therefore

) _
extend over { =0, but does if we multiply it by e~¢ O+ 02=x) op

U, and o A= )] U,.

We may argue similarly at { = oo, or use the real structure p to transfer
everything from 0 to co. What we have found is a description of the line
bundle E; ® Ey in terms of tramsition functions. We cover the spectral
curve ¥ with five open sets:

Uy, Uy, p(U), p(Uy), 2\ 7 {0, o0} = U,
and define (taking x to be z =0 for simplicity) the transition functions

—l .
eC Ay +iy,)

onU,NU,,
= Ay +iyy)
e onU,nNnU,,
(7.4) o mivn 0 T2
- —i
e T on Uynp(U,),
Gy, —iyy)
e~ on U, N p(U,).

Since U,, U,, p(U,), and p(U,) may be chosen to be pairwise disjoint
there are no further cocycle conditions.

Now exponentiation identifies the Picard group or Jacobian of line bun-
dles of degree zeroon X with theadditive abeliangroup H ! (Z;0)/H 1(Z VAR
and (7.4) shows that E; ® Ey is the element in this group represented by

the Cech cocycle
—1 .
¢ Ay, +1iy,) onUynU,,
A, +iv,) onU,NU,,
_Cll(y1_iy2) on U()np(Ul):
(ALY, — 1y,) on Uy N p(U,).
In particular, this depends linearly on y, and y,.

The second case of det® = 0 is dealt with similarly. Here since { =0
is a branch point, we take a neighborhood of 0 whose inverse image in X
is a connected set U, with parameter 7 given by n2 = {. From §3 there
is a holomorphic line bundle L, over M, which is an eigenspace for the

holonomy of the flat connection and converges to ker® as # — 0. The
connection matrix as in Proposition (3.10) is of the form

(7.5)

0=—n_11cdz+a0+~- ,

so consideration of parallel translation leads to a description of the line
bundle E ; ®Ey by exponentiation of a Cech cocycle defined by three open
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sets: U, p(U)), U,. Itis

- 77_11c(y1 +1iy,) onU,nU,,
ney, —iy,) on Uy N p(U)).

In either case, the eigenspace bundle E, is of the form E_® Ly where
Ly is a line bundle of degree zero varying linearly in y.

Remark (7.7) From the geometrical origin of the line bundle in terms
of equations on the torus M = C/T" it is clear that L, must be trivial if
Y +iy,=m+nt,sothat y — Ly actually maps the torus M linearly to

a real torus in the Picard group H' (Z;2)/H 1().".; Z) . This observation is
equivalent to the fact that each period of the differentials 6 and é on X
is of the form 2inn as in Proposition (4.2).

To see this, suppose we consider the case det® # 0, and let .Z denote
the sheaf over X of local meromorphic functions on % whose only poles
are simple ones at n_l{O, oo} . Since multiplication by the section { of
Z(2) on CP' which vanishes at 0 and oo makes a local section of ./
regular, .# = n"¢(2) and we have the exact sequence of sheaves

(7.6)

(7.8) 085 —2Q2),—0,

where D is the divisor 7~ '{0, oo} .
The sheaf d.# of local differentials with double poles at n_l{O, oo}
and zero residues appears naturally in the exact sequence

(7.9) 0-C—> A —-d# — 0,
and putting together (7.8) and (7.9) we have a commutative diagram:
0 0
T T
f2), = €02,
;

0O - ¢ - # - d# — 0
T T

0O - ¢ - ¢ - dg¢ - 0
7 7
0 0

Now @ € HO(Z; d#) and its image in HI(Z; C) in the long exact se-
quence of the middle row consists of the class of the periods of . This
maps by exactness to zero in H ! (X, #), therefore its period class in the
long exact sequence of the bottom row maps to an element in H ! (Z;9)
coming from HO(Z; @ (2),) in the exact sequence for the middle column.
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Since the periods of 6 are of the form 2inn, n € Z, the corresponding
element in H'(Z; &) actually lies in H '(2: Z). Finding this element just
involves spelling out the coboundary map

H'Z;002),) % H ;o).

From Proposition (3.5), ®logu = A{™ +a+{b((),s0 £0 =d(AL™ )+
and gives the value +4 on the two points of D lying over { =0, with +4
over the corresponding points at co. The coboundary map & is defined
by extending this section s of & (2) on D to a neighborhood U of D
and taking the Cech cocycle ¢ “ls of @ on T \DnNU to represent an
element of H l(Z; @) . This, however, is precisely the description (7.5)
for y = 1, y, = 0, showing that L, is trivial at this point. Using 6
one similarly sees that y, + iy, = T gives a trivial bundle and by linearity
y = m+nt. The case det® = 0 may be treated using (7.6) in an exactly
parallel manner.

We obtain therefore a map /: M — Pic”* (Z) to the Picard variety of
line bundles of degree (p + 1) by defining /(y) = E;, and we have seen
that, with respect to a uniformizing parameter of A/, the map / is real
linear and maps to a real torus. This image may not be a 2-dimensional
torus. Indeed if p = 0 or 1, the Picard variety is itself only 0 or 1-
dimensional. However, we shall see that this is the only case where [ fails
to be an immersion. We need the following lemma:

Lemma (7.10). If X is the spectral curve and n: X — CP' the projec-
tion, then

a": H(CP'; (k) — H'(Z; @ (k)

is an isomorphism for k <p+1.

Proof. The spectral curve X by its definition lies in the total space of
@(p + 1) and is given by an equation ;72 = P({), where P is a section
of @(2p+2) on CP' and n is the tautological section of Z(p +1). We
compactify @(p + 1) to the projective bundle X = P(@(p+ 1)@ &) over
CP'. The divisor classes F of a fiber and Z of the zero section generate
H2(X; Q) and satisfy

(7.11) Ff=0, F-Z=1, Z'=p+l.
Since the spectral curve satisfies
2-F=2 and £-Z=2p+2,

its divisor class is 27 .
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Let L be the line bundle on X given by the divisor class Z. Then
there is an exact sequence of sheaves

(7.12) 0—~@k)®L > —&k)— (k) — 0.

By covering CP' with the standard patches it is easy to see that for
k < p+1 all sections of @(k) on &(p+ 1) are pulled back from cpP'
and hence also on X .

From the long exact sequence of (7.12) the lemma will follow if
H'X;@(k)®L %) =0 and H'(X; Z(k)®L %) = 0. The first is clearly
true by restriction to fibers, since @(k) ® L™% is of negative degree on a
fiber.

Now since &(k) ® L™" is of degree —1 on each fiber by (7.11) and
HO((CP1 ;0(=1)) = Hl((CPl ; @(—1)) = 0, then by the Leray spectral se-
quence H'(X; #(k)® L™")=0 for i =0 and 1.

Consider then the exact sequence

0—=Ok) 9L ~@(k)eL ' =Kk &L, -0
restricting to the zero section for the last term. From the exact cohomology
sequence we have
HZ .0k L Y=H (X;0k) o L),

but Z =CP' and #(k)®L™' = F(k—p—-1) from (7.11). Thusif k < p+
1, the degree of ﬁ’(k)@)L—l is negative on Z , and so HO(Z ; @’(k)@L_l)
vanishes and hence also the required cohomology group H x;@ (K)QL™?).
q.e.d.

From the lemma, we see in particular that H O(Z; @ (2)) is 3-dimensional
if p+ 1> 2. Thus, considering the exact sequence of sheaves on X

06 —E02)~0(2),—0,

-2

where D is the divisor of the section { of #(2), the long exact coho-
mology sequence shows that for p > 1 the dimension of the image of
HO(D; @(2)) in HI(Z; @) via the coboundary map J is 2-dimensional.
Considering the real elements of H 0(D; @(2)) which come from the y,
and y, coeflicients in (7.5), we see that this image has two real dimensions,
and from the Remark above this is the image of the map /, translated by
ET.

XSo, apart from the cases p = 0 and 1, which we shall consider in detail
in §§9 and 10, the image of .# in the Picard variety is a 2-dimensional
torus.



HARMONIC MAPS 667

This torus is real in a specific sense given by Proposition (4.2) and its
interpretation on the spectral curve X. This is that the holomorphic line
bundle E_ is quaternionic with respect to the real structure ogp: X — X.

Recall that if 7: X — X is a real structure on a complex manifold, i.e.,
an antiholomorphic involution, and L is a holomorphic line bundle on
X, then so is 7°L. An isomorphism L = t*L is of two types depending
on whether its square gives multiplication by a positive or negative scalar
on L. In the first case L is called real, in the second gquaternionic. The
space of holomorphic sections H O(X ; L) is a real or quaternionic vector
space depending on the type.

If X is the spectral curve X, then T = gp makes E_ quaternionic.

With respect to the real structure { — 7™ on CP' the line bundles @ (k)
are real and hence from (4.2) real on X. The tensor product of a real
bundle and a quaternionic one is quaternionic, and the tensor product of
two quaternionic ones is real. Thus the bundle L, = E; ®E, is a real

element of H' (Z;9)/H ! (X; Z) with respect to op. We shall prove next
some important properties of these quaternionic bundles.

The group of real classes in the Picard group, or Jacobian,
H 1():; @) H l():; Z) may in general have several components. In our sit-
uation we have:

Proposition (7.13). The real part of the Jacobian of X has one compo-
nent if p is even and two components if p is odd.

Proof. First note that op has no fixed points, for such a point would
project to a point on the unit circle in CP' and be fixed by ¢. In other
words the two eigenspaces of the holonomy coincide at this point. How-
ever, over the unit circle, the flat connection is unitary, so the eigenspaces
are orthogonal.

Now the Jacobian of the possibly singular curve X fibers over the Ja-
cobian of its normalization £ with fiber of the form C*” x C". The C”
factors are given by the isomorphism « ¢ of the corresponding line bundle
over £ over a point & with the fiber over ¢&. Since gp has no fixed
points, a real isomorphism is determined by transforming a by op to
the conjugate points giving the connected group C* as the real group,
embedded in C* x C* by z — (z, Z). The real form of C is always
a connected group isomorphic to R, so the fibers of the projection to
Hl()i; é’)/Hl (2; Z) are connected.

Consider now the smooth curve . In the definition of T in (5.4) we
see that since there are no real points of CP' over which the eigenspaces of
the holonomy coincide, the points zn(8,), --- , #(8,) occur in conjugate
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pairs, hence
/ k/2

PH1=g+1+2Y n+2> my,
i=1 i=1
and p and g have the same parity.

The hyperelliptic curve £ is defined by the equation 772 = p(¢) where p
is a real polynomial of degree 2g+2 with no roots on the unit circle (from
(4.2)), thus there are g+ 1 roots inside the circle and the winding number
of p({) is (g+1). Consequently if g is even, the double covering of the
unit circle in £ has one component and if g is odd, two components.

Now decompose CP' into the two hemispheres whose intersection is
the unit circle and correspondingly decompose £ into two submanifolds
D, and D, with common boundary the inverse image of the circle. If g
is even, this is a single circle and the Mayer-Vietoris sequence gives

¥ =H'E;2,)=H' (D,; Z,)0 H (D,; Z,).
The real structure interchanges D, and D,, so the invariant elements are
of the form (x, (6p)"x) and there are #HI(Dl s Zy) = 2% of these.

Now H 1(52; &)/H 1(52; Z) is a g-dimensional complex torus and the
real points under op will be a disjoint union of # real g-dimensional tori.
In particular each torus will have 2° real half-periods, i.e., 2° invariant
elements of H 1(D1 ; Z,) . Since for even g there are only 2% of these,
we deduce that the real part of the Jacobian of ¥ is connected, and so by
our previous argument is that of X.

When g is odd, we have two circles on the common boundary of
D, and D,, and these contribute a 2-dimensional invariant subspace of
H &; Z,) . There is a complementary (2g — 2)-dimensional space gener-
ated by cycles in D, and their conjugates in D, which are interchanged by
op. Thus thereisa (g—1)+2 = (g + 1)-dimensional invariant subspace,
i.e., 28*' invariant half-periods (see also [12]). The real Jacobian must
therefore have 2 components. So then does that of £. q.e.d.

We see then that the real part of Pic”* (2£) has one component if p is
even and two if p is odd. The eigenspace bundle is quaternionic and so the
single component for p even must consist of the quaternionic line bundles.
In fact, without knowing the existence of the eigenspace bundle, one can
see that this real torus consists of quaternionic bundles, for, as shown in
[3], every square root K /2 of the canonical bundle of a real curve with
no real points must be quaternionic if the genus is even. Tensoring with
the real bundle & (2) gives us a quaternionic bundle of degree (g + 1).
Similarly, from [3] a curve of odd genus has 2% real square roots and
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the rest quaternionic. Thus the two components in the odd genus case
consist precisely of real and quaternionic bundles. In either case we have
the following. '

Proposition (7.14). The space of quaternionic line bundles in Pic’ + (Z)
is connected.

The quaternionic line bundles on X have the property that they are, in
the language of algebraic geometry, nonspecial:

Proposition (7.15). Let L be aline bundle of degree (p—1) on £ which
is quaternionic with respect to the real structure cp. Then HO(E; L)=0.

Proof. Since L is quaternionic, the vector space H 0(2‘.; L) is quater-
nionic and hence even-dimensional as a complex vector space. The same
will also be true of ¢*L. Suppose this dimension is nonzero: it is there-
fore at least two. Fix a section s, of o"L and consider the sections 58y
of Lo"L as s e HO(Z; L). Now L®¢"L is o-invariant and hence
pulled back from CP ! and of degree (2p —2), hence

Lo L=0O(p-1).

But from Lemma (7.10) every section of this bundle is pulled back from
CP', and so every divisor of a section must be g-invariant. However, fix-
ing s, and varying s in H O(E; L) we get a linear system of divisors of di-
mension > 1 (since dim HO(Z; L) > 2) which must be g-invariant. Thus
the movable part of the system |L| is of the form |Z(k)|, and we have
L=#(k)oL where L' isthe fixed part; in particular dim H(Z; L) = 1.
But &(k) isreal and L is quaternionic, therefore L' is quaternionic. But
then dim HO(E; L') must be even which is a contradiction. q.e.d.

Applying (7.15) to EX(—1) we see that H(Z; EX(~1)) = 0. From the
Riemann-Roch theorem for a possibly singular curve in a surface, we have
H'(Z; EX(~1)) = 0. Applied to E it gives
(7.16)  dimH’(Z; E})—dimH' (Z; E5) = (p+ 1)+ (1 —p) =2.

Now consider a point in CP' whose inverse image in X consists of two
points—a divisor D—and the exact sequence of sheaves:
0—E(-1) —E, —»E;|D — 0.

From the long exact sequence we have

0— H'E;E5)—~ H D, El)— -
but since HO(D; E;) is two-dimensional, dim HO(Z; E;) < 2. On the
other hand from (7.16) dim HO(Z; E}) > 2, hence we have equality and
H'(Z;E})=0.
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By its very definition E, is a subbundle of the trivial bundle X x V,,
and hence there is an exact sequence

O—-E -V, —»Ex—>0.

Since E, is of negative degree, HO(Z; E ) = 0 and hence we have an

injection 0 — V. — H°(Z;El). But we saw that H'(Z; E}) is 2-
dimensional, so there is a natural isomorphism
(7.17) V=~ H(Z; E).

To summarize, we have seen here that as x varies over the torus A/,
the eigenspace bundle varies /inearly in a subtorus of the connected space
of quaternionic line bundles of degree (p+1) on X. For each quaternionic
line bundle L of degree (p+1), the space H 0():.; L) is 2-dimensional and
restricted to the subtorus; it is naturally isomorphic to the vector bundle
48

We shall use this information in the next section in order to reverse the
foregoing arguments and show how to construct solutions to (1.7) from an
algebraic curve satisfying certain constraints.

8. The construction

The object of this section is to provide a construction of solutions to
(1.7), and in particular harmonic maps, from an algebraic curve. We shall
prove the following:

Theorem (8.1). Let X be a curve in the total space of @{p + 1) over
cp! defined by the equation 712 = P({) where n is the tautological section
of i@+ 1) over @(p+1), P() is a section of @(2p +2) over cp',
and . @(p+1) — CP' isthe projection. Suppose X satisfies the following
conditions:

(i) P() is a real section of @ (2p+2) with respect to the real structure
{— Z_l on CP',
(i) P({) has no real zeros (i.e., zeros on the unit circle { = f_l),

(iii) P({) has at most simple zeros at { =0 and { = oo,

(iv) there exist differentials 0, 6 of the second kind on T with periods
lying in 27iZ,

(v) @ and 6 have double poles at ="' (0) and 7" (c0) and satisfy

"0 =-0, 6’0 =-6, p’0 = -8, p"G =—6 where o is the involution
on X induced by multiplication by —1 in the fibers of @(p+ 1) and p is

the real structure on @(p + 1) induced from { — f_l , and
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(vi) the principal parts of 6 and 6 are linearly independent over R.

Then, for each point in the Picard variety of line bundles of degree (p+1)
on X which are quaternionic with respect to the real structure po, there
exists a solution of (1.7) for a torus, such that T is the spectral curve
of the solution and 0, @ the corresponding differentials. The solution
is, moreover, unique modulo gauge transformations and the operation of
tensoring V by a flat Z,-bundle. ( Note that (ii) implies that po has no
fixed points, and so from [3] quaternionic bundles of degree (p+1) exist.)

Proof. (1) The first task is to define the torus and its conformal struc-
ture from the curve X.

Consider the case where P(0) # 0, then the differentials 6 and 6 have
double poles with zero residue on the divisor D, = n_I(O) consisting of
two points. Using { as a local parameter we have

d¢ d{

b= z

+ holomorphic, 6 = 4= + holomorphic,

and the principal parts of # and § may be invariantly considered as
sections of @#(2) on the divisor D, (cf. (7.8)). We consider then the 2-

dimensional complex vector space HO(D0 ; @(2)) and the 1-dimensional
subspace U of vectors u for which ¢*u = —u, ¢ interchanging the twa
points. Since from (v) ¢"6 = —8 and ¢"0 = —@, the principal parts of
6 and 6 liein U. Since by (vi) they are linearly independent over R,
they generate a lattice I' in U and we define the torus M = U/T". Note
from (3.5) that in the case where X is known to be a spectral curve, the
principal parts are —Ad{/ 4’2 and —Atd{/ 4’2 , so that this definition gives
a torus conformally equivalent to one with lattice generated by 1 and 7.
If P(0) =0, then from (iii) we have a simple zero so that the single point
D, lying over 0 is a smooth point of X and then the principal parts of 6
and 6 lie in the 1-dimensional space U = HO(DO; @(1)). We define the
torus by M = U/T where T is the lattice generated by the principal parts
of 6 and . From (3.10) this is the definition that is required.

(2) Next we must define a rank 2 vector bundle V' over M . For this
we consider, for P(0) # 0, the exact sequence of sheaves

0—-@—-012)—-d(2),—0,

where D is the divisor n_l{O, oo} on X, and the exact cohomology
sequence

0—C—H(Z;#2)—HD;#2) % H Z;0)
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Now the divisor D is real and in fact D = D + pa(D,), so the 2-dimen-
sional subspace of the 4-dimensional complex vector space H O(D; @ (2))
on which ¢ actsas —1 can be written as U@ U = U®C where U is the
subspace of H 0(DO; @(2)) defined above. From (v) the principal parts of
# and @ lie in this subspace and are real with respect to the natural real
structure op.

The coboundary map J maps the 2-dimensional space U ® C to
H'(Z; @) commuting with real structures and this gives a real linear map
from U to the real part of H‘(Z; @) . v

From Remark (7.7), which applies to the curve X, the images of the
principal parts of 8 and § under & are integral classes since from (iv)
they have periods in 27iZ.

Consequently we obtain a (real linear) map

I:M=UT—HE;0)/H (Z;2) =Pi’(Z),
which associates a line bundle on X, real with respect to po, to each
x e U/T", with L, =¢& . To be precise, we have associated an equivalence
class of line bundles on X to x, but we may choose a Poincaré line bundle
on Xx Pico(}:) , 1.€., a line bundle . which for each y € Pico(}:) restricts

to a bundle Ly in the equivalence class of y. By the universal property
of Poincaré bundles, there is a holomorphic map

fIx(U®C)T—XxPid(Z),

and we pull back the Poincaré bundle .%° to obtain a line bundle on X x
(U®C)/I'. For each x € U/T' c (U®C)/T the line bundle L, is real.
There is an ambiguity in the choice of Poincaré bundle—tensoring with
a line bundie pulled back from PicO(Z)—which we now proceed to remove
. as far as we can. For this purpose consider the involution g, on X x
(U®C)/T given by o on the first factor. The bundle Ul* L oL is trivial
on each fiber of the projection p, , so the direct image sheaf p,.(0; ¥ ® &)
is a line bundle § on (U ® C)/I". The first Chern class of ¥ on X x
(U® C)/T may be written

c(Ly=a+p,b,

where a € H'(£; Z)® H' (U®C/T'; Z) and b€ H*(U®C/T; Z). Since
o, actsas —1 on H'(X;Z) and +1 on H'(U®C/T; Z) we have

(0L ®F)=—a+p,b+a+p,b=2p,b.
From the Grothendieck-Riemann-Roch formula we have
¢\(S) = p,-(1d(Z) - 2p, b),
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which is an even class in H 2(U ®C/I'; Z), and hence the line bundle S has
a holomorphic square root S /2 Under the natural notion of equivalence
of square roots of a given line bundie .S, any two differ by an element of
H' WU eC/IT;Z,)=2H (UT; Z,).

Choose such a square root and consider .¥’ = ¥ ® p; S~Y2 This is
again a Poincaré bundle on X x (U x C)/I" but satisfies in a canonical way
the identity

(o) F 0 F )=,
and hence we have, for each x € U/I', a natural isomorphism
(8.2) 0L, ®L =G

uniquely defined modulo the action of H' (U/T"; Z), where L =% ' e IRy

Now let E* denote the given quaternionic line bundle of degree (p+1)
on X and define the bundle & on X x (UQ®C)/T by

(8.3) &=pE'®Y.

Then & = g|2x{x} is quaternionic for x € U/T", of degree (p + 1) and
depends linearly on x .

From (7.15) and the discussion following it, we see from the nonspecial-
ity of quaternionic line bundles that dim A 0(Z; E;) =2 and H' (Z; E;) =
0, and so the direct image sheaf p,.& is a rank-2 bundle on (U ®C)/T.
Restricting to U/I" we obtain a rank-2 vector bundle V*. In other words,

we set
(8.4) V' =H(L;E)),

which is consistent with (7.17) for spectral curves. Since E; is quater-
nionic, each VX* i$ a quaternionic vector space so the bundle ¥ has a
quaternionic structure.

(3) The quaternionic structure on V' gives its structure group a reduc-
tion to the nonzero quaternions. To reduce to SU(2), the unit quater-
nions, we need a nondegenerate skew form on V.

Now from (8.2) we have an isomorphism

¢'E.®E.=¢"E"®E",
and since E* is of degree (p + 1), the o-invariant bundle ¢*E* ® E”

is isomorphic to & (p + 1). Choose a real isomorphism; then we have a
natural isomorphism

(8.5) ¢'E.RE.=F8(p+1)

compatible with real structures.

0
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Let v, v, € V; be two vectors. From (8.4) they correspond to two
sections s, , 5, of E . Using (8.5) we have

(8.6) o's, ®s,€ H(Z;O(p +1)).

To proceed further we need to know the sections of @(p+1) r  £. From
the exact sequence of sheaves (7.12) with k = p + 1, it follows that

0= H'(X;0(p+1)) - H'Z:0p+1)) ~ H (X; 6p+ 1)@ L),
and from the sequence restricting to the zero section Z of X we have

YeH'(X;0p+1)o L.

CxH(CP';0)=H Z;00p+1)®L™
Hence,
(8.7) dmH(Z; @(p+ 1)) < 1 +dim H (X ; @(p + 1)).

Restricting to the total space of #(p+1) in X, the sections of the line
bundle &(p+1) are spanned by 5 and pull-backs of sections of &(p+ 1)
on CP'. But n does not extend as a section of &(p+ 1) on X since its
divisor is of the form aZ+bZ  (Z_, the infinity section of the projective
bundle X ) and intersection with the class F of a fiber gives a+ b6 > 0,
contradicting F* =0 if aZ + bZ_ = (p+1)F (see (7.11)). Thus from
(8.7)

dmH(Z; #(p + 1)) < 1 + dim H(CP'; &(p + 1)).

However, since # is a nonvanishing section of @ (p+1) on X, not pulled
back from CP' we have equality and every section of @(p+1) on X isof
the form An+r({), where A is a constant and r({) a section of &(p + 1)
on CP'.

Returning to (8.6), we have from this that

(8.8) o8, ®5,= (s, s)n+r),
where w(s,, s,) is a constant depending bilinearly on s, and s,. Now
075, @5, =0 (075, ®s,) =a (s, s,)n+r())
= —a(s,, ) +r(0).

Thus w(s,,s;) = —w(s,,s,) and w is skew. If w(s;,s) vanishes for
all s, then the divisor of 5, must be g-invariant and E; therefore must
be pulled back from CP'. Since E; is quaternionic and not real this is
impossible, so @ is nondegenerate and defines a symplectic form on V.
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(4) The next goal is to define for each ¢ € CP' (¢ # 0, c0) a flat
connection on ¥ over U/I". To do this we pass to the universal covering
U and define a parallel translation ny: V: — V; satisfying

M, =I0, (x,y,zeU)

zy Tyx
By differentiating along paths, this will define in the standard way a con-
nection on V' over U.

We shall define ny by returning to the argument where parallel trans-
lation was used to describe the eigenspace bundle in (7.1).

Consider E_® E; =L,® L’ . By the definition of the line bundles L,

there exists a nonvanishing section P, of L ® L. on X\ n_l{O, oo}
such that P, extends to the whole of X if we multiply by

_ A
e:tc )»[(yx‘”-xl)"’l(yz—xz)] on []1 and U2
if 0 is-not a branch point, and

77wl (= x, )+, — )]

e on U,

if 0 is a branch point, and corresponding multipliers at co given by ap-
plying the real structure.

Any two such sections differ by a scalar multiple, but using the isomor-
phism (8.2), we have a trivialization of ¢" (L,® L;) ®L,® L; , SO We may
choose Pyx to satisfy

(8.9) (¢"P, )P, =1.

There is only an ambiguity of &1 now, which from the connectedness of
U may be removed, so that Pyx is uniquely determined. By uniqueness
and linearity we have

(8.10) PP =P

zy© yx zx"®
We also have compatibility with the real structure by uniqueness and the
reality property of the multipliers.

Now choose a section of Z(1) on CP' which vanishes at (# 0, 00)
with Dg the corresponding divisor in £. From the exact sequence of
sheaves

0—E.(-1)=E, - E,|, =0

we have

0 *\ ., yy0 *
(8.11) H'(S; E) = H'(D; EY),
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since HO(Z; E;(—l)) = Hl():; E;(—l)) = 0 from the nonspeciality of
quaternionic bundles. Thus any section is determined by its restriction to
the divisor D, We define Hy ,(§) by the commutative diagram:

HYZ.E') == HOs: EY
H X 2 y
(8.12) | |
0 * va 0 *
HY(D.;Ey) —> H'(DE;)

Then I, (0): V: — V;* is an invertible linear map which is compatible
with both the quaternionic structure and symplectic structure of V;* and

V;* ,i.e.,

(8.13) () w,=o,,

(8.14) S0 =1, T j..

Moreover, from (8.10) it satisfies
IL (OIL,(§) = IL.(C)

and therefore defines a connection on V" over U . Since I1, (C) is inde-
pendent of any path joining x to y, the connection is flat.

(5) Finally, we must show that this family of flat connections is of the
form V + ¢ “lo-¢ ¢", and to do this we consider the limiting behavior
as { —0.

First consider for ¢ € X, the evaluation map

(8.15) H(S; ED) =5 EN(9).

If all sections vanish at &, then the divisor & lies in the fixed part of E; ,
but in the proof of (7.15) we saw that the fixed part of a quaternionic
bundle is real. Since (op)(¢) is also a fixed divisor, then removing the
fixed part we obtain a quaternionic line bundle of degree < p — 1 with
a 2-dimensional space of sections. From (7.15) this is impossible, so the
evaluation map (8.15) is surjective.

From the definition (8.12) of parallel translation we have a commutative
diagram for ¢ ¢ {0, oo}
I, (&)
E—

H'(Z; EY) H°(3; E))
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so parallel translation preserves the sub-bundle E ({) of V™" which is the
kernel of the evaluation map, and its effect there is Py_x1 &.

Now (8.15) is valid even for £ € 7~ '{0, oo}, so the sub-bundle E () c
H 0(Zl; E;) which is preserved by parallel translation extends to n_l(O) .

Suppose first that 0 is not a branch point; then n_l(O) consists of two
points, and the two bundles E () and E (¢{) have zero intersection
in some neighborhood. Choosing a local trivialization of V™ given by
sections of these two bundles, parallel translation has the form

- _—
diag(e:tc A[(yl—x|)+l(y2 Xz)]H:tl(C, x,y)),

where H is holomorphic in {, from the behavior of Pyx as { — 0. Thus
the connection matrix is of the form

(8.16) A=¢" ('lgz _Aodz>+a(C,x),

putting z = x, + ix,.

If { =0 is a branch point, then the two sub-bundles E () and E (a¢)
for m(&) # 0 still extend to #(&) = 0, but coincide there.

Choosing a local coordinate n2 = { there is a local gauge such that these
two sub-bundles are spanned by (:]) and (l_n) .

In this gauge the connection matrix of the flat connection has a Laurent

expansion
oo oo 2
A=3"4"=> 47",
) —00

and the two eigenspaces preserved by the connection have holonomy of
the form

Ly, —x )+, — )] H(

e r]5x5y)‘

Thus we have
had oanf1 1 1
. _
> A ( )=(Kn d2+a(x,n))( )
~ n n
giving 4, =0 for n<—1 and 4_,(})=0, 4_,() =), so

(8.17) A=¢" (2 8) dz+a(l, x).
Hence from (8.16) and (8.17) the connection has the form

V,=V+{ ' ®ral, x),
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where a is holomorphic in {, ® ¢ QJ’O(U; EndV ), and V is some
fixed connection. If we absorb the constant coefficient in the power series
expansion of a({, x) into V, we have

V. =V+ {0+ ",

n=1

Using the real structure (8.14), the connection as { — oo is determined
by its behavior as { — 0 and we see that ¢, =0 for n > 1, V com-
mutes with the quaternionic structure on V', and ¢, = j ~!®;. Using the
compatibility with the symplectic form (8.13) this yields a connection of
the form

(8.18) V,=V+{T0- (0,

where V is an SU(2) connection.

Now, as in §l1, flatness of the connection implies (1.7). Also, from
(8.17), if { =0 is a branch point, det® = 0.

We have defined here a solution to (1.7) on the universal covering U
of the torus U/I". However, the line bundle L, and the vector bundle V,
defined by it are already defined on the torus. To see that the connection
(8.18) is defined on the torus, we need only note that if x, y € U/T
are sufficiently close, then there is an unambiguous choice of transition

functions of the form e+ AM=*+02=x1 for the line bundle L,®L,.
This makes the connection well-defined on the torus.

In producing the connection we have at each stage effectively reversed
the construction of the spectral curve, so X is indeed the spectral curve of
the connection (8.18). The ambiguity in the definition of the connection
was the choice of a square root of the line bundle §. It is easy to see that
the H l( U/T'; Z,) ambiguity here changes the line bundle . " by a flat
Z,-bundle on U/T" and has the effect of changing the connection (8.18)
by tensoring with the same flat Z,-bundle.

If ¥ is a curve satisfying the conditions of Theorem (8.1) with differ-
entials 6, #, then it is easy to find the eigenvalues of the holonomy of the
flat connection. In fact, on the universal covering of X we solve df =6,
and since the periods of & lie in 27ziZ, then ¢’ is a well-defined func-
tion on X\ z~'{0, oo} . The additive constant ambiguity in f becomes
a multiplicative ambiguity in e’ , but if we insist that e’ a*(ef ) =1 this
is reduced to a +1 ambiguity.
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Consequently we have functions u, 2 well defined modulo +1, such
that
d,ll ~ dﬂ * - k.
8.19 0=—, 6=—, ou=1, o j=1.
(8.19) m 7 Ho U fo it
In terms of the proof of Theorem (8.1), if @ € U is the principal part of
the differential @, then the line bundle L, is trivial and

PoeL,®@Ly=0d

is a function on X x n_l{O, oo} which extends after multiplying by
eﬂ_u[“‘“aﬂ on the open sets U;, U, and correspondingly at p(U,),
p(U,). On the one hand, this means that 6 = dP, /P, (and from (8.9)
(6"Py)P,, = 1) so P, = u. On the other, the definition of the con-
nection in the proof of the theorem means that P is the eigenvalue of
the holonomy around a generator of =,(U/I'). Thus the functions u,
ji above are the eigenvalues of the holonomy and ¢, § the differentials
defined in §4 for the corresponding solution to (1.7). q.e.d.

Theorem (8.1) associates to the data (Z, 8, §) just an equivalence class
of solutions to (1.7), the equivalence being the operation of tensoring by
a flat Z,-bundle (and of course gauge equivalence). To remove this am-
biguity we must choose the functions x and # such that 6 = du/u,
6 =dii/it and us”yu =1, fle*jt = 1. Indeed, since each can be con-
sidered as an eigenvalue of the holonomy of the flat connection, tensoring
with a flat Z,-bundle has the effect of multiplying each by the correspond-
ing sign given by an element of H'(U/T'; Z,). Thus the data (Z, u, i)
determines the solution of (1.7) up to gauge equivalence.

With this point in mind, we may now give the algebraic geometric equiv-
alent of a harmonic map of the torus to SU(2), the basic geometric prob-
lem which we aimed to solve:

Theorem (8.20). Let £ be a curve with equation n* = P({) satisfy-
ing the conditions of Theorem (8.1), and let u and i be functions on
s\ 70, oo} satisfying 6 =duju, 6 =dpi/it, and po*u=jc i =1.
Then, ‘

(i) (X, u, it) determines a harmonic map from a torus to s? if and
only if
w@ =p@=1 foralléen {1, -1},

(ii) the map is conformal if and only if P(0) =0,
(iii) the torus maps to a totally geodesic 2-sphere if and only if p is
odd, P({) is an even polynomial, and the point E € Pic"™ () and the
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functions u and fi on Z\n_l{O, oo} are invariant by at, where T is the
involution of X defined by t(n,{)=(n, -{),

(iv) the harmonic map is uniquely determined by (X, u, it) modulo the
action of SO(4) on 53

Proof. (i) From §1, the solution to (1.7) determines a harmonic map
if and only if the flat connections for { = 1, —1 are actually frivial.
Since they are unitary, this occurs if and only if the eigenvalues of the
holonomy are +1. From the proof of (8.1), this means u(&) = (&) =1
if n(&)=¢(=1,—-1.

(i) From (1.8), the map is conformal if and only if det® = 0 and
from (8.16) and (8.17) this occurs if and only if 0 is a branch point of the
covering £ — CP' | i.e., if and only if P(0) =0.

(iii) From (1.9) the torus is mapped to a totally geodesic 2-sphere if
and only if there is a gauge transformation g with g2 = -1, leaving A
invariant and such that ¢~ '®g = —®. As in §3, we then have
(8.21) gV, +{ 0 (dg =V, - (' D+ (D,
and so the zeros of P({) are invariant under { — —{. Now a conformal
harmonic map to S? has trivial spectral curve, so the map cannot be
conformal, hence P(0) # 0. The zeros of P({) in the disc |{| < 1 are
therefore paired by the involution, hence the number (p + 1) of these
zeros is even, and so the arithmetic genus p is odd. Since p is odd,
the section P({) itself is invariant by the natural involution { — —(, so
P({) = P(={) is an even polynomial.

Now from (8.21)

g, H(0)g, =HJ(-0),
and so the eigenvalues of the holonomy at { and —({ are the same. Con-
sidering their asymptotic form near { = 0 given by Proposition (3.7)
and the discussion of case (b) following it, we see that (o7)"'p = u and
(67)*fi = ji. Note that g gives an isomorphism between the eigenspace
bundle E_ and (o'r)*EX whose square is —1.

Conversely suppose X satisfies the given conditions, Then (67)"0 = 6
and (a‘c)*é = 6, and so the line bundle L constructed from the principal
parts of 6 and 6 satisfies (ar)*LX = L_. Since the point E is also g1-
invariant, from the proof of Theorem (8.1) the bundle E; 1s gr-invariant,
and we have an isomorphism

(8.22) ot: H'Z; Ef) > H'(S; ED),
which is compatible with the quaternionic structures and symplectic struc-
ture, and hence as x varies describes a gauge transformation g of V.
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From the construction of the flat connection in Theorem (8.1) we have
(8.23) IV DD =V, - D+ (D
Now the action of 7° on E; is +1 since 7 is an involution. Thus
g2 = &1, but if g is an SU(2) gauge transformation with g2 = +1,
then g itself is a scalar +1 ; thus in (8.23) ® = 0 giving a trivial spectral
curve. Hence g2 = —1 and from Proposition (1.9), the torus maps to a
2-sphere.

(iv) From Theorem (8.1), the data (X, u, ii) determines the solution to
(1.7) modulo gauge transformations. The harmonic map g{(x) is defined
by choosing covariant constant sections s,, s_, of the SU(2) principal
bundle P associated to V' with respect to the trivial connections at { = 1
and { = —1 and defining g(x) by

(8.24) s, = g(x)s_,.

A gauge transformation may be interpreted as a diffeomorphism of P,
covering the identity on M and commuting with the action of SU(2).
Because of this last property the function g(x) is independent of gauge
equivalence and thus depends only on the choice of sections s, and s_, .
But any two covariant constant sections are related by an action of SU(2),
so a different choice of §,, §_, gives

§,=hs, = hg(x)s_, = hg(x)k™'5_,
for h, k € SU(2).

The map g: M — SU(2) is thus well defined modulo right and left
actions of SU(2), i.e., the action of SO(4) = SU(2) x SU(2)/ £ 1 on
S =SU(2).

Remarks (8.25). (1) The invariance condition (¢7)"L_ = L _ can be
written as T*Lx = L;l which means that L, lies in the Prym variety
of ¥ with respect to the involution 7. Since 7T has four fixed points
({0, 0}), the Riemann-Hurwitz formula gives the genus of Z/7 as
1(p — 1) and hence the dimension of the Prym variety as p— 5(p — 1) =
L(p +1). In the guise of the sinh-Gordon equation or the related sine-
Gordon equation, the linearization on a Prym variety is well known ([2],
[19]).

(2) The constraint (i) in Theorem (8.20) can be more analytically de-
scribed (at least for a smooth curve X) by using the reciprocity law for
differentials of the second and third kinds (see [13]). If we put

_ n(1)dg
(8.20) T
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where 7(1)? = (=1)"* P+l@, - (a@,+ 1)+ a,), then ¢ is a meromor-

phic differential with simple poles at the two points (¢, g¢,) € n_l{l}
and with residues (+1, —1). Moreover, using the real structure p(n, {) =

(ﬂ_(zm) , Z_l) , we have

" 2’dt
o= MDTAT.
7E—1)°
so for p > 0, ¢ vanishes at co.
Let o, - , 6,, be cycles on I representing a canonical basis for

H\(X; Z) with common base point {; and otherwise disjoint, and let
N, denote the periods of ¢ around these cycles. The differential of the
second kind # on X has by definition periods around these cycles of the
form 2zim, (m;,€Z).
On the simply connected surface Z\[JJ, there is a well-defined function
= | go 0, and the reciprocity law states that

14

(8.27) > (mN, ,—m,  N)=> Res,(f9),
i=1 4

where the right-hand sum is over the poles of f¢.

In our situation if { = O is not a branch point, then f has simple poles
with residues +4 (see (3.5)) over { =0, and corresponding simple poles
at oo. If { =0 is a branch point then f has a simple pole with residue
k there (see (3.10)). The differential ¢ has simple poles with residues +1
over { =1 and vanishes at oo. Hence (8.27) gives

Z(mz pai = My NV;) = ’Iﬂg(l); + f(&)) — f(a&)).

Now 8 = du/u, so we can take f to be a single-valued branch of
log (&) in Z\|J4, and since o*y = u~ ", this equation gives
14

(8.28) S (mN,, —m N)= M) o 10g uie)).

P p+i p+l
i=1 7(0)

If { =0 is a branch point, then near { =0, ¢ has the form

_ n(1)d¢ 2n(1 )dﬂ
*=e-n -V e

and so we obtain'

(8.29) Z(ml =My iN) = (<1 T 2108 ).
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The first part of the constraint (i) now becomes, with k € Z,

14
Z MmN, —m, N)+2,1n(1)—27z1k or

=1 n(0)
(8.30) ,
: 2xn(l .
Z m; p+t - +iNi) + (“l)pH 1—[’7‘5‘) =2nik.
i=1 i
To deal with the second part, we use the differential
g _n=hde
n(¢+1)

with periods N, ' and have the constraint

_ n(-1) ’
L m, N)+2A 7(0) =2nk , or

P

i2kn(—1) ,
p+t_ p+i [)+(—1)p+n—ai=27tlk.

>
(8.31) =p

> (m
Note that the consistency of (8.30) and (8.31) constrains the equation of the
curve X. If the equations are consistent then the principal part (4 or k)
of the differential is determined by the curve (and a choice of integers).
The integrality of the periods of 8/2mi thus imposes possibly further
constraints. _

Clearly the conditions on f in (8.20) can be found by replacing 6
by 6 in the above analysis. Note that there is a choice in defining ¢,
depending on which point in ! {1} has residue +1 and which has -1,
thus the consistency condition is between (8.30) and (8.31) or the equation
obtained from (8.31) by changing the signs of all the periods NJ'. (1<j<
2p).

Theorem (8.20) reduces the question of finding harmonic maps of the
2-torus to the 3-sphere to those of algebraic geometry or just complete
hyperelliptic integrals. Many natural questions are not immediately solv-
able in algebraic geometric terms, however. For example, the question of
whether the map is an immersion or an embedding. One rather remark-
able result is however clear, concerning deformations of harmonic maps.
Note that in Theorem (8.1) we must choose a point E in the quaternionic
Picard variety Pic’ +l(Z) to correspond to the origin in M = U/I'", the
torus. However, condition (i) of Theorem (8.20) makes no reference to
this point. Thus, given one harmonic map we have a p-dimensional fam-
ily of maps, by choosing the point E arbitrarily. Clearly choosing E to
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be in the image of the map of M to Pic +1()2) given by the eigenspace
bundle is the equivalent to a translation of M itself, i.e., a conformal
automorphism of M, but if p > 2 there is more freedom and we obtain
a (p—2)-dimensional family of deformations of the harmonic map. If the
spectral curve is nonsingular, this family is a (p — 2)-torus. These defor-
mations preserve u and ji and are therefore isospectral deformations of
the family of flat connections V , + '@ — ¢®* . Just what geometrical
properties of the map are preserved other than the energy is not clear. In
the final few sections we shall consider low genus solutions and show in
particular in §12 that there are indeed examples of this phenomenon with
p=3.

9. Rational solutions

We consider here the case where X is a rational curve (i.e., has genus
p = 0) and look for the corresponding harmonic maps. From §4, the curve
is given by the equation

(9.1) 7 =-al’+(aa+ 1) —a

for some o € C, |a| < 1, and having the real structure

(9.2) pin, O =(C T,

Consider first the case a # 0, in other words let us seek the nonconformal
harmonic maps.

Since X is simply-connected, the differentials # and § have zero pe-
riods and we can find single-valued functions logu and logjt such that
6 = d(logu) and § = d(logji). The function log has only simple poles
at { =0 and { = oo, and hence is of the form

logu = C_l(anC +bn+c+d+ eCz).
On the other hand, we require ¢*u-u = 1, hence
_ logu:C_l(anC+bn)+nik fork e Z.
We also need the reality condition p*u = ﬁ_l which yields
(9.3) log i =an—EC—1n+m’k
and similarly |

(9.4) log it = an —a¢ ™ 'n + nik.
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To obtain a harmonic map we need from Theorem (8.20) the constraint
u(&) = @& =1 forall & en '{1,-1}. Now when ¢ =1 in (9.1),
n’ =(1+aa@) — (a+a), so from (9.3)

(a—a)V/(1+ad) - (a+a) € niZ

and similarly for { = —1 and for ji. We obtain constraints:

(a—a)\/(1+aad)— (a+a)=nim,
i(a+a)\/(1 +aa) + (a +a) =nin,
(@ —a)/(1 +aa) — (a+a) = rim,
i(@+a)n/(1+aoa)+ (a+a) = zin.

(9.5)

(Since (1+ aa)+(a+a@) is positive we may take the positive square root
in these equations.) Consider now the behavior of logu as { — 0. Since
n* = —a at { =0, we have from (9.3) and (9.4),

logu=—a”¢_a +o, 10gy=—avé,_a +o,

and so the torus has modulus
(9.6) T=4/a

by comparison with (3.5).
Putting 7 = /(1 +e@) + (a+a) and s = \/(1 +ea) — (a +@) from
(9.5), we find

_nmn  mim . TR Tmim
Tt YTt
so that from (9.6).

_ h+imx
YT AT imx’
(9.7) states that the torus is defined by a sublattice of the lattice gener-
ated by {1, ix} with x real. In other words, it is a finite covering of a
rectangular torus.

Consider next the case of a conformal map. Here from Theorem (8.20)
we need P(0) = 0, so the spectral curve has equation

(9.8) N =L

In this case logu has poles at the zeros of #, and putting in the o-
invariance and reality conditions we have

(9.7) where x = —g.

(9.9) log u =an~ﬁrfl + mik, logu = 2111—511_1 + mik.
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hence

(9.10) a:%(n+z'm), &=%(fz+iﬁz).
Here the possible moduli for a harmonic conformal map are the finite
coverings of a square torus. Note from (6.13) and (6.14) that the Clifford
torus correspondsto n=-1, m=1, a=1, m=1.

To actually find the harmonic map in the rational case we may remark
first of all that since the Picard variety of X is trivial, there is a natural
identification of the line bundles £, and E; for x,ye U/T' =M. This
means that the flat connection constructed in Theorem (8.1) is actually
translation-invariant on the torus. Trivializing the bundle with the group
action, the Higgs field ® may be written as

(9.11) ®=¢dz

for a constant trace-free matrix ¢, and the (0, 1) part of the connection
as

(9.12) di=d"+vydz

for a trace-free complex matrix v .
The equations (1.7) then become

(9.13) (v, 9]1=0, v, v 1=1[¢, ¢ 1
The flat connection is
d+ydz—y'dz+{ "¢dz - (" dz

and so, solving the parallel translation equation by exponentiating the con-
stant coefficient matrix, we have

HO) =exp(-v+y" - '+ (8",

(9.14) . . 0 .
H({)=exp(-¥T+y 1-( ¢t+{0 7)),
and hence
_ _ _ * —1 _ *
0.15) log i = \/—det(y — y* + {6~ (48",

log 2 = /— det(yT — y*t + (ot — (6°).
The harmonic map itself is defined by
(9.16)
g,y =exp(-y,(Ww -y +¢—-8)—iv,(~w -y ++¢))
cexp(, (W — W =9+ )+ i (—w—v —9p—¢")),
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where z =y, + iy, € C, the universal covering of M .
The equations (9.13) are easily solved: the first implies that if ¢ # 0
then ¥ = A¢, and the second then reads

A1é, ¢ 1=1[¢, ¢°1.

Now if |A| # 1, then [¢, ¢'] = 0 so ¢ is normal and can be diagonal-
ized by an SU(2) transformation. Since y commutes with ¢, y will
be diagonal too, but this means that both connection and Higgs field are
simultaneously reduced to the structure group U(1), in which case there
are no branch points for the spectral curve, and moreover any harmonic
map has the circle as an image. ‘

Thus we have |[A| = 1, s0 ¥ = e'eqﬁ. The general rational harmonic

map can therefore be written as

—i6 *
Yz)¢")
—i6 | %

2)¢).

Let us consider from this point of view the construction of the conformal
map corresponding to the integers (m, n, A1, #) in (9.10). Since det® =
0, ¢ is nilpotent and from (9.13) there is an SU(2)-basis such that

(9.17) ¢=<8 3) w:<g ef;a>.

Now det(y — v + (" '¢—(4") = e—[6|a|2/C + -+, so from (9.15)

2(z) = exp(—{(z + eiei)qzﬁ +(Z+e
-exp(—(z — eief)qb +(Z-e¢

logu = ie”"lal/n+ -,
and so from (9.9) and (9.10)

(9.18) ilaje’®? = %(n +im),
i.e.,
(9.19) o= E(n + im)eiﬁ for some f € R.

2

The ¢ factor may be removed by an overall conjugation by the matrix

e'#? 0
( 0 e—iﬁ/2) )
and then (9.16) gives

g(yl,yz)=exp<n(my2—nyl)(_01' é))exp(—n(myl+ny2)(? (’)))
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After an SO(4) rotation this is the map into S*cc? given by

| —(m— 1 -
z, = ﬁelﬂ((mﬁ)yl (m—n)y,) ’ z, = ﬁelﬂ((m n)y,+(m+n)y,) ’
which maps onto the Clifford torus z,z, = z,Z, .
Thus, the only conformal harmonic maps arising from a rational spec-
tral curve are finite coverings of the Clifford torus.

10. Elliptic solutions

The spectral curve for genus one is of the form

2
2 _ 2 —

(10.1) n=]]@¢ - (@ + D+ )

i=1
for a; € C, |o;| < 1 and real structure

——2 1

(10.2) pn, O)=m¢ ¢ ).
Since the normalization of a singular elliptic curve is rational, we know
from §5 that ¥ must be nonsingular, so that «, 61_1 s Oy, T ' are
distinct.

Consider now the question of finding differentials § and 6 with periods
in 27iZ . From the exact sequence of sheaves

0-6—-012)—272),—0
in (7.8) we have the long exact cohomology sequence
0—C— H(3;8(2) - H'(D; #(2) > H'(X; 0) —» H'(3; 6(2)).

Here H I(}:; @) is 1-dimensional (since p = 1) and from the arguments
following (8.7), HO(Z; @(2)) is the 4-dimensional space spanned by 7
and the pull-back of sections of & (2) on CcP'. By Riemann-Roch,
H 1(E; @(2)) = 0 and so the map J is surjective.
We may therefore find a class x € HO(D; @(2)) satisfying ¢”(x) = —x
and p”(x) = —X such that §(x) is a real integral class in Hl(Z; a).
Consider the long exact cohomology sequence of the sequence of sheaves

0—-OK)—d# —&(2),— 0.
We have H'(X; @(K)) = C acted on trivially by ¢ butsince ¢*(x) = —x,

it follows that there exists a differential § € H O(Z; d.#) with principal
part x.
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Decomposing H' (£; C) = H"'°aH""', B has period class (b, d(x)).
Hence adding on a holomorphic dlfferentlal with period —-b—4d(x) we find
a differential with the same principal part and period class (—d(x), d(x))

which therefore has periods in 27iZ, since d(x) is integral.

In fact we may use this argument for a general smooth curve £ to
show that for any x € U C HD(D; Z(2)), there is a differential f with
principal part x and imaginary periods. Since "+ and p* B+ f are
holomorphic differentials with imaginary periods, they must necessarily be
zero, so f transforms appropriately under ¢ and p.

Now since p"f = —f, the integral over a cycle A which is real (with
respect to p) is imaginary and over an imaginary cycle B is real. But if
all periods are of the form 2#iZ, then the B-period must be zero. Thus
we can find S with periods 27i and 0.

If a differential y has zero periods and double poles at 0 and oc, then
y =df for some meromorphic function of the form

f= (an+b+cC+a’C)

if it satisfies 6"y = —y and p*y = —7, then
f=ian/{ foraeR.

Thus, the lattice generated by differentials {6, 6} is a sublattice of that
generated by the differentials {8, iad(n/{)} forsome a € R. Conversely,
choosing a, we obtain differentials satisfying the conditions of Theorem
(8.1) and hence a solution to (1.7) for any curves of the form (10.1).

Let us consider now the question of finding the harmonic maps corre-
sponding to 8 = nf, 6 = iad (n/¢). If we choose 4, B as the canonical
basis for H|(Z; Z), then in the nonconformal case we have the constraints
(8.30) and (8.31) given as

(103)  nN,+ 2}."50; —2mik,  +nN+ 2/1’7((0)) = 2k,
and the constraint for the differential iad(n/¢{) is simply

(10.4) ian(1) = 2z=il,  ian(-1) = 2xil'.

From (10.4), I'n(1) — In(—1) = 0 and putting this in (10.3) we obtain
(10.5) I'N,£IN, = 2mi(kl' — k'l)/n.

Thus the two constraints are firstly

(10.6) n(V/n(-1) =1/l €Q,
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and secondly that the period of the differential

1 { I'n(l) | In(=1)\ d¢
(10.7) %(@—1)*(“1))7

over an imaginary cycle B should be rational. .

Conversely, if n(1)/n(=1) = [/I' with [, [' mutually prime, and if
I'N, — IN, = 2zim/n € Q, then we may write m = kl' — k'l for k,
k' € Z and find consistent solutions 4, a to (10.3) and (10.4). Moreover,
as above we may find a differential of the second kind satisfying ¢"6 = -8,
p*0 = —0, having principal part +id{/ { over 0 and zero period over
B . Then the reciprocity law (10.3) shows that this differential has period
2nin, hence (10.6) and (10.7) are the only required constraints. The first
is an algebraic constraint on the two complex numbers «,, a, and the
second one transcendental.

The case of a conformal map is exactly the same, using the second
formula of (8.30) and (8.31). In this case, since { =0 and occ are branch
points, the spectral curve has equation

7’ ={((a@+ 1)l - a—al").
The constraint (10.6) is then

(ca+1)—(a+a) [
(10.8) ¢ma+lﬂwa+af_ﬂeQ’
and (10.7) may be written as
(10.9)

= at
e \Jam+ DE - al a3 - 1)

Viea+1) - €qQ,

since the covering of a path joining the two branch points « and a !

gives an imaginary cycle B in H(Z; Z).

The solutions to (1.7) which have elliptic spectral curves possess a group
invariance property just like the rational case. In fact the line bundles L
for x e kerd C U can all be identified, so the solution is invariant under
the 1-dimensional group of translations of A = U/I" parallel to kerd.
Conversely, since J is injective for genus p > 1 (see §7), any solution
with a 1-dimensional invariance group must have genus 0 or 1. As we saw
in §9 there is actually a 2-dimensional group for p =0.

Since the bundle V' is pulled back from U/kerd, there is a gauge in
which the invariant connection 4 has matrix 4,(x)dy where y isa linear
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coordinate such that §(8/9y) = 0 and z = x + i/y. The Higgs field can
be written
D = ;(Ay(x) +id;(x)) dx,
where the 4,(x) take values in the Lie algebra of SU(2).
The equations (1.7) can then be written

d _ . . dd, 1. . .
E(AZ +id;) =—i[4,, 4, + i4;], T - EZ[A2 +id;, A, —i4;],
or equivalently
dA dA dA

ax VAl =l A, =l A,

which we may call Schmid’s equations [25], arising in the study of de-
generating period matrices. They are closely related to Nahm’s equations
[22], and the method for solving these in [14] in terms of the geometry of
an algebraic curve leads in this case to the same spectral curve - X. The
solution of (10.9) with A4,(x) taking values in the Lie algebra of U(k) is
determined by a curve of genus (k — 1)2 , and in our context would cor-
respond to harmonic maps into U(k) with a 1-dimensional isomorphism
group.

Given this group invariance, the conformal harmonic maps with elliptic
spectral curve map onto minimal tori in S* which are invariant under the
action of a circle subgroup of SO(4). These were classified by Hsiang
and Lawson [16], whose approach was to show the equivalence of this
problem with finding closed geodesics on the quotient space s? /S ' This
quotient is a surface of revolution, and the quadrature needed to integrate
the geodesic flow involves elliptic integrals. The periodicity consists of the
rationality of a certain elliptic integral of the third kind, which is essentially
the constraint (10.7). It is also shown in [16] that a minimal torus with a
2-dimensional symmetry group is the Clifford torus, coinciding with our
result in §9, derived from the spectral curve point of view.

Consider now the question of finding harmonic maps to the 2-sphere.
Here, from Theorem (8.20), we require the spectral curve and differentials
8, 6 to be invariant under the involution a7(y, ) = (=5, =¢). Thus
the curve has equation
(10.10)  #° = (am@+ 1)°* - (a+ @)’ forsomeacC, |of < 1.

It is clear from this equation that 17(1)2 = 17(—1)2 ,80 n(1)/n{—1) = %1
and (10.6) is automatically satisfied. Moreover,

« dl -d¢

(10.11) O T=1 = A+ 1)
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Since 7 is a holomorphic involution with no fixed points, it must be a
translation by a half-period. In particular, it transforms the imaginary
cycle B to a homologous cycle, so

/_ﬂ_=/ _ac
gn¢—-1) Jumnl-1)°

/_ﬂ;:_/_ﬂ_
g n(¢-1) sn(l+1)°
le.,

. !
(10.12) N,+N;=0,

and so from (10.11)

which is the constraint (10.7).

Thus any spectral curve of the form (10.10) gives a harmonic map to
the 2-sphere.

One classical family of such maps arises from the Delaunay surfaces [9].
These are surfaces of revolution of constant mean curvature. They are
constructed by rotating a plane curve traced out by the focus of an ellipse
rolling along the x-axis. The Gauss map is clearly doubly periodic, one
period being the length of the circumference of the ellipse, and so defines
a harmonic map to the 2-sphere. Explicit formulas involve integrating the
arc length of an ellipse and hence elliptic functions. On the other hand, we
know that the rotational symmetry of the map about the x-axis must lead
to an elliptic spectral curve, and hence one of the form (10.10). In fact,
a surface of revolution has reflectional symmetry about a meridian. This
reflection therefore defines an antiholohorphic involution v of the surface
M and the Gauss map takes this to a standard reflection of the two-sphere
into itself, fixing an equator. This equatorial reflection is induced by the
isometry g — — g_1 on SU(2) which leaves the Levi-Civita connection
fixed but interchanges the left- and right-invariant connections. Pulling
back to M, this means that

(10.13) VIV, 4T 00" =V, + 0" - 0.

Thus if « is a branch point, so is —a~'. Then since the curve is nonsin-
gular, —a~ = 17"! , SO « 1s real or imaginary.

Actually o is imaginary, for (10.13) implies that v"® = ®" and thus
if ® = ¢dz, the eigenvalues of ¢ are real on the fixed point set of v: a
meridian. By rotational invariance they are real everywhere, so A is real.
The modulus of the torus M is given by 7 = ian(0)/A = taa/Ad which,
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to be in the upper half-plane, must have o imaginary. Thus the spectral
curves of the Delaunay surfaces have the form (with a = ir):

’12 _ (1 _*_"2)24,2_*_,‘2(1 _CZ)Z.

11. Genus two solutions

Let us now consider spectral curves X of arithmetic genus 2. Because
the parity of the arithmetic genus p and geometric genus g are the same
(see §5), then if X is singular g = 0. But we already saw in §5 that this
is impossible, so ¥ is nonsingular. The spectral curve is always therefore
of the form

3
(11.1) n = -[[@L - (a@ + D +a,)
i=1

for «, a,, a, distinct with |o;| < 1 and real structure

pin, =T T,

Since p > 1, we see from §7 that the map o: U — H 1(Z; &) is injective
into the real points of H 1(Z; &) . On the other hand dimU = 2 and
dim A l(Z; &) =p=2,s0 ¢ is an isomorphism. Hence any real integral
class is in the image of &, and so as in §10 we can find independent
differentials § and # with periodsin 27iZ . Consequently, from Theorem
(8.1) any curve of the form (11.1) is the spectral curve for a solution of
(1.7). We now look for an example which gives a harmonic map.

We consider, as in the elliptic case, a branch locus which is invariant
under the involution { — —{. Thus (¢, o,, @;) = (0, @, —a) and the
spectral curve is

(11.2) 201+ a@)? - (@ +ald)).

Since { = 0 is a branch point, we are looking for a conformal harmonic
map to the sphere. Now the involution { — —{ is covered by the trans-
formation 7 of X:

(11.3) t(n, &) =(in, =0),

which is of order four, and commutes with the real structure p.
Take for H,(Z; Z) as a canonical basis {4, p(4), B, —p(B)} where
A is represented by the closed path in £ which covers the straight line
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segment [0, o] in the unit disc D C CP ! , and B the path which covers
[0, —a]. Then

(11.4) 7(4) =B, 7(B) = —A4.

If ¢ =n(1)d¢/[n(¢ - 1] and ¢ = n(1)d{/[n( + 1)] are our two basic
differentials, then (11.3) gives

(11.5) p=4¢, ¢ = —¢.

Since T maps n_l(D) C X to itself, the cycles 4, B are contained in
n_l(D) ,and ¢, ¢’ have no poles in n—l(D) , we have from (11.4) and

(11.5)
/A¢’=/Ar‘¢=/T(A)¢:/B¢,
/B¢’=/Br‘¢= ,<B)¢=’/A¢’

and hence if (N,, N;) are the periods of (¢, ¢') over the given basis for
H/ (X;Z), then

(11.6) N, =N,, N;=-N,.
Since 7 commutes with p, we also have
(11.7) N,=-N,, N,=N,.

If the periods of 6 are 2mim, over this basis, then since the periods
over the imaginary classes 4 — p(4) and B — p(B) are zero we have
m, = m, =m and m, = —m, = n, and then the constraints (8.30) and
(8.31) for a conformal harmonic map become

2 .
' mN3—an+mN4+nN2+a~’§11(1)=2mk,

(11.8) S
mN, — nN, + mN, + nN, + =5 n(~1) = 2nik.
«Q

Using n(—1) = in(1), (11.6) and (11.7), this gives

2
2kin(l)

m(N, + N,) = n(N, - N,) + 210 _ oz,
(11.9) @

~m(N, = N,) — n(N; + N,) + =5~ = 2mik’,
(81
which are consistent only if
k .kl
(11.10) (N, = N,) + (N, + N,) = —2n T 1K)

T m=in)
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Conversely, suppose there exist k, k', m, n € Z such that (11.10) is
satisfied. Then defining x by the first equation of (11.9) we take the
corresponding differential 8 with principal part given by x and having
imaginary periods. By the reciprocity law its periods (27ix, 27wiy) over
(A, B) satisfy (11.9) with (m, n) replaced by (x, ). But if

(11.11) (N, +N)* + (N, =N, #£0,

then this linear equation for (x, y) has the unique solution (m, n), so
@ has periods (2zim, 2min).

If § has periods (2mifm, 2zmin), then there exist integers k , k' such
that

. - 2% .
(N, + N,) — (N, = N) + ";’2(1) = 2mik,
— (N, ~ Ny) = a(N, + N + 2D ok

2
(81

and hence just as above, we obtain

k+ik'  k+ik

m—in m—in
So if (k + ik'), then (m — in) are mutually prime in Z[i], (k + ik)
(a + ib)(k + ik’) and (71 — if) = (a + ib)(m — in), in which case & =
(a + ib), and since the modulus of the torus A is from (3.10) given by
k/x =(a+ib), werequire b#0€Z.

Conversely, if (11.10) and (11.11) are satisfied, then given a + ib €
Z[i] with b # 0 we may find a differential § with periods in 27iZ and
independent of 4.

Thus to find the harmonic maps of this form, we simply need to find «

such that the complete elliptic integral of the third kind
. 1)d
N(a) = (N, = N,) + i(N, + N,) = / LIOLIS 1C ,
A+p(A)+iB+ip(B) n(¢-1)

where 7° = (1 + aa)zcz ~ (a + EC2)2), takes a value of the form
—2n(k +ik")/(m —in), with k, k', m, n integers. Since such complex
numbers are dense, we only need to show that the image of the complex-
valued function N(a) contains an open set. By the inverse function the-
orem this will follow if we can find a value « such that the Jacobian
determinant

aN aN
(11.12) | A:‘Reg; fm 5
Re 56 Im <>

oy
~

- 6
is nonzero, where o =re' .
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Now for the curve (11.2) the differential ¢ is given by

\/(71 +7%)? —~ 4r cos’ 0 d¢

¢ = : .
V220 — 2@ 4 o022 $PE-1)
Thus
a¢|  _ —irf(l-r) 1+ +8%) d¢
(11.13) Bloco (4= (14 YT T
=_l.rz(l_rz)(l+Cq)((cl)+c )%C’
where g({) = (1+1%)°¢* - r*(1+¢%)?, and
¢ _ 2 (1=r) dC
(11.14) o7 lo=0 ar\/(1+r2)zc2~r2(1+c2)2C”2(C—1)
a0 -ghdg
=—r(l1+r") 2D e
Now
LU0+ de _+TH0 4T _dT
@O m o« T
_ Ta+a+ )t
qa(0) 7

So if { = x is real, then

0  «0¢ .2 2
(11.15) 350 7 55——17‘(1—7‘)

and similarly,

8¢  +0¢ 2 (1+ X1 +x) dx
(11.16) b—r—p —a—r=—r(1+r) 20%) mpat
Now 9¢/d60 and 9¢/dr are differentials of the second kind of £ with
poles at the branch points #, —r, r~', —r~' which are the zeros of ¢(x).
Representing the cycle 4 by the covering of the real segment [0, r], in-
dented at r, we see from (11.15) that

9 99 _ [0 _ «0¢
a6 1~ o) = /A_,,*Aao‘Aao P 56

a2 2 (l+x2)2(1+x) dx
=i =) [ BRI,
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and similarly from (11.16)

2 2
i(]\[1 “Nz):‘r(1+r2)/ (L+x7)(A+x)(1 +x7) dx
A

or q(x) n(x)’
Arguing analogously for N; and N, and the cycle B, we have

ON 0 . 2.,

57 = E((N‘ + N,) +i(Ny;+ N))=—r(l +r")(ia~-D),

ON

Sg =i 21 = rH)ia - b),

where

2.2
("’”b)z/(A,B) a(xy  n(x)

Now ﬂz(x) =x((1+r2)2x2—r2(1+x ) )< 0 1f O<x<r so a and

b are real and so the determinant (11.12) is —(a +b ) (1 — ") which
is only zero if ¢ and b vanish, since 0 < r < 1. If a vanishes for all
r, then 8(N, — N,)/Or vanishes, so (N, — N,) is constant. But N, — N,
may be written as the integral

Lr (l—r) dx

/ 1+x )( r2) dx
2 \/ 1+r2x2—r (1+x2)2x1/2(X—1)’

which is nonconstant, in fact as » — 0 it is asymptotically
1 ! dt
P2 0o P12
Thus there exists a real point « at which the derivative of N has maximal
rank, and the inverse function theorem argument may be used.

Note that the sign ambiguity in the choice of ¢’ (or equivalently the
transformation 7) means that the argument can be applied equally to the
function M = (N, — N,) — i(N; + N,). Since we have shown that neither
M nor N is identically zero, neither is (by analyticity in ) MN =
(N, = N,)* + (N, + N,)* . Thus condition (11.11) is also satisfied.

We may deduce therefore the following.

Proposition (11.17). There exist conformal minimal immersions of a
square torus into the 3-sphere whose spectral curve is of genus 2.



698 N. J. HITCHIN

Proof. We merely note that a solution to (11.10) whose existence we
have shown, together with the choice k + ik’ = i(k + ik'), (1 — i) =
i(m — in), gives the modulus 7 = i, in other words a square torus. (The
only other conformal structures obtainable this way have modulus equiv-
alent under SL(2, Z) to /i for some / € Z, and a covering of the square
torus will give such a map in any case.)

12. Genus three solutions

A spectral curve of genus three is of the form
4
2 _ 2 _
n =[]@¢ - (@@ + Dl +a)
i=1
for |o;l <1, 1<i<4.

In general we now have to impose constraints on the coefficients «;
in order to obtain differentials 6 and @ with periods in 27iZ and so
solutions to (1.7), and then even more constraints to obtain a harmonic
map. We shall consider here the special class of examples obtained by
setting '

o=@, =0, a;=-—0, oy=-«
and hence giving the spectral curve
2 — 2,2 N N 2,2 2.2
(12.1) n=(aa+ 1) —(a+al))(aa+ 1) —(@+al)).
This curve X is invariant by an abelian group of transformations of order
16, generated by the involutions:

w0, )=, -0, v(n,0)=@,0.
o(1,0)=(-1,0, pn,O=mE ", 7.

The last two are of course defined for any spectral curve, and the existence
of the first one is one condition for a harmonic map to the 2-sphere.

If the four complex numbers o, @, —a, —a are distinct, then X is
nonsingular and we begin by considering the action of 7 and » on the
canonical basis for H,(Z; Z):

(12.3) {4y, A, p(4,). By, By, —p(B))}.

Using the fact that if C is represented by the cycle which covers the
segment [-@, —a], then C + A, = 4, , we find ~

T(Ay) = A, 7(4,)=-C=~-A4,+4,,

7(p(A4))) = —p(4;) + p(4y) = =p(4,) + 4,

T(Bo)zBl'i‘Bo’p(Bl): ‘L'(B])Z'—Bl,

- T(p(B))) = —p(B,).

(12.2)

(12.4)
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Now take x € U C HO(D; ¢@(2)) and find, as in §10, the corresponding
differential # with principal part x and with imaginary periods. Since
7 acts as —1 on U, then 0 + 170 is a holomorphic differential with
imaginary periods and hence vanishes, so 70 = —6.

Let the periods of # with respect to the basis (12.3) be 2znim o 1<
j < 6. Then firstly since p*0 = —8, the periods over imaginary cycles
vanish, so from the reality of the basis (12.3),

(12.5) my,=m;=m and my=-mg;=n.
Secondly, since 770 = —0, (12.4) gives
(12.6) m =-m =0 and m,=-m,=0.

Consider next the action of the antiholomorphic involution v on the
canonical basis (12.3). We obtain immediately

V(Ao)z_Aoz V(A1)=_A1’ V(p(Al))=_p(A1)~
Since v is orientation reversing, it reverses the intersection form, so
(12.8) V(Bo)zBo’ V(B1)=B1> V(p(B1))=p(B1)-

Now the action of v on the complex vector space U defines a real struc-
ture. If 6 is a differential with v-invariant principal part in U, then
v*0 — 0 is a holomorphic differential with imaginary periods and so van-
ishes. Thus the periods of 6 over v-invariant classes vanish and so from
(12.8)

(12.9) m, =ms=mg=0.
Considering the basic differential

n(l) _d¢
n ({-1)°

¢ =
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we have v"¢ = ¢ and so

M=LE=L/W=£W¢=N,

and similarly for N,. From (12.9), the constraint (8.3) for a harmonic
map reads:

(12.10) m(Ng + Ng) + 2An(1)/5(0) = 2zik.

But the left-hand side is real, so choosing an integer s and taking £k =0,
we set 4 = —%mﬂ(O)(N5 + Ng)/n(1) and solve the constraint equation.
Moreover, since 7 interchanges —1 and +1 and 7°0 = —@, the corre-

sponding constraint { ~8.31) at —1 is automatically satisfied.

Similarly, taking 6 as a differential with principal part anti-invariant
under v, we have m, = m, = m; = 0 and the condition:
(12.11) n(N, — Ny) + 2An(1)/n(0) = 2nik.
Here N, — N, is imaginary and the constraint can be satisfied by taking
k=0 and A= —%my(O)(N3 — N,)/n(1). Conversely, (12.10) and (12.11)
interpreted as statements of the reciprocity law show that the differentials
6 and ¢ have periods in 27iZ, as long as N; — N, and N, + N, are

nonzero.
M—%=L@f—£ﬁ=l%ym%—A¢

Now,
=/A @+ (vp)"$) (from (12.7)),

1

7C-1D =1

=+ e,

3
¢+uwf¢=mn( aat €‘“)

N,— N, _2/ ((1+aa) P (e+@HU+L+ DA ,
V(1 + 0@ — (@ + 3 + 0@ - (@ + al?)?

which, putting o = pe ‘and { = peie , 1s asymptotic as p — 0 to the
elliptic integral

z\/_/ .
P J_g\/cos20 —cos2¢’

which is nonzero.
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Similarly, N+ N, is asymptotic to the integral of the same holomorphic
differential on an elliptic curve around an independent cycle. Since its
periods cannot both be imaginary, then N; + N, must be nonzero.

We have therefore proved:

Proposition (12.12). There exist harmonic maps of a rectangular torus
to the 3-sphere with spectral curve of genus 3.

Note that the modulus of the torus is given by

— : _n(N;—-N,)

= IT MmN
As in Theorem (8.20), when the initial point F in the Picard variety lies
in the Prym variety of the involution 7, we obtain a harmonic map to the
2-sphere. To understand this map more geometrically note that the vector
space U = C admits the real structure v and v*0 =8, v*6 = —8, so the
lattice I’ C U generated by the principal parts of 8 and # is invariant
by the two reflections +v . If the initial point E is v-invariant, then the
harmonic map to the 2-sphere is equivariant with respect to the group of
reflections generated by +v. In analytical terms Remark (1.12) implies
that such a map corresponds to a solution of the sinh-Gordon equation on a
rectangle which is invariant under reflections about its sides. An existence
theorem for such solutions was given by Wente [28] who went much further
and showed that the map to the 2-sphere was in fact the Gauss map of
an immersed torus of constant mean curvature in R>. Thus our examples
may be considered to be the Gauss maps of Wente’s surfaces.

Actually, by a remarkable process of mathematical evolution, begin-
ning with computer graphics of a numerical solution to Wente’s problem,
Abresch [1] found an analytical solution in terms of elliptic functions cor-
responding to a pair of distinct elliptic curves. To see the link with our
point of view we note that the linearization of the equations as in §8 takes
place on the abelian variety of line bundles such that (¢7)*L = L. These
are line bundles on the quotient curve £/o1 = X which has Euler charac-
teristic $(2 —2g) = —2 and hence has genus 2. Acting on X is the group
of holomorphic transformations of order 4 generated by pv and tpv.
The involution pv is induced by { — ¢ ~! and the fixed points on X are
the four points n—l{:hl} . These give two fixed points in the quotient X,
hence if g, is the genus of X, = Y/pv, then by the Riemann-Hurwitz
formula

2-2-2=2(2-2g,)-2
andso g, =1, i.e.,, X, is an elliptic curve. Similarly, X, = X/(tpv) is
elliptic and the map X — %, xZ, given by the two projections exhibits the
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product PicO(Zl1 )% PicO(ZZ) as a covering of PicO(Z) , and so the equations
can effectively also be linearized on the product of two elliptic curves.

13. An energy formula

The most fundamental invariant of a harmonic map is its energy—the
value of the functional which defines the variational problem. This is given
by

1
(13.1) E=5 [ oy,
M

where the norm of df € Q' (M ; f*(TG)) is determined by the metric on
M and TG. o

In our situation, where G = SU(2), we used as in (1.8) the bi-invariant
metric —tr(AZ), on G which is twice the usual metric on the 3-sphere
of radius 1. If we use now instead the standard metric on s? , then the
energy may be written as

E= —% ; Mtr(f'la’f)sz = —%/Mtr(f_ldf/\ «f~'df)
(13.2) - -'/ tr(¢ A +¢) from §1 |
M
= —Zi/MtrCD/\CD .

This functional of course makes sense for the full gauge-theoretic equations
(1.7), being essentially the L* length of the Higgs field.

Remark. In the geometrically significant special cases arising from a
minimal surface in S° or a surface of constant mean curvature in R’ ,
the energy can be expressed in terms of the area. In the first case the map
is conformal and, as in (1.8), the pulled-back metric is 4 tr®®" so (13.2)
gives the area directly as E. In the second case the harmonic map in
question is the Gauss map, whose derivative is the second fundamental
form B of the surface in R>. Thus

E=4 [ 181w, =1 [ @ -2K)0,.
where H is the mean curvature and K the Gaussian curvature. Using
the Gauss-Bonnet theorem for the torus and the constancy of H , we have
E = %H 4 , where A is the area, so taking the mean curvature to be 1,
the energy is half the area. ' :
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In order to compute the energy, we shall make use of the theory of
determinant line bundles due to Quillen [23], Knudsen and Mumford [17],
and developed by Bismut and Freed [6].

We consider the complex manifold M x C and the holomorphic rank-2
vector bundle ¥ of §3 obtained from the Cauchy-Riemann operator

(13.3) d/ =d,-(®" ({€Q)

of a solution to (1.7).

By virtue of the proper map given by projecting to C, there is a natu-
ral holomorphic line bundle .& over C—the determinant bundle of this
family. Furthermore, since the elliptic operator

d: Q(M; V) - Q"' (M 7))
has index O for the torus M , there is also a canonical holomorphic section
det(dé’) of . over C which vanishes whenever dé’u = 0 has a nontrivial
solution #. In[23] it is shown that the determinant bundle .% has a natu-
ral Hermitian connection, given a Hermitian form on the vector bundle ¥ .
In fact, given the universal picture of all Cauchy-Riemann operators dZ+B

on a fixed C*° Hermitian vector-bundle ¥, with B ¢ Q! (M;EndV),
Quillen showed that the curvature F of this connection is given by

(13.4) F=dd" (L/ trB* /\B) ,

2n Jur
where d’'d” is defined on the infinite-dimensional complex vector space
Q% '(M; End V).

Specializing to the 1-parameter family given by (13.3), from (13.2) we
see that the curvature of this connection is

;o ZCZ * E —
(13.5) F=dd (E/Mtrd)/\d))z—ﬁd{/\d{.

The energy E thus has an interpretation as the (constant) curvature of
the determinant bundle.

If s is a nonvanishing holomorphic section of a line bundle L then,
as usual, if V is the unique connection compatible with the metric and
holomorphic structure, we have Vs = ws (@ € QI’O) and a"||s||2 =
(Vs, s) = w||s||2 so that the connection form is @ and hence the curvature
1s

F=dow=d"dlog|s| .

If L is defined on a Riemann surface N with boundary 8 N and if s has
n zeros (counted with multiplicity) in N but is nonvanishing on d N, then
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a straightforward and common integration gives

(13.6) / F =2nin +/ d' log|s|” = 2min +/ w.
N N ON

If s vanishes on AN with total multiplicity m, then (13.6) is modified
to

(13.7) /F=27zin+7tim+PV/ w
N aN

for an appropriate principal value integral of the singular 1-form w.

We apply this standard procedure now to the determinant bundle &
over the unit disc in C and take s to be the canonical holomorphic section
det(dé') . From (13.5) we obtain

(13.8) E/2=27m—+—7tm—iPV/Sl w.
Note that, from the work of Bismut and Freed [6], the connection and
canonical section of the determinant bundle on the circle S ! are deter-
mined by the family of operators d;' prl oy , and not by the embedding
of the circle in a larger family. Thus the boundary term in (13.8) is intrin-
sically determined by dg —¢"®" which, from (1.7), is the (0, 1) part of
a flat unitary SU(2) connection.

Take the ramified double covering D of the unit disc D given by D =
7' (D) c 5. Thus D is half of the hyperelliptic curve of §4.

By the definition of 3, the vector bundle V' pulled back to M x D is
an extension of the eigenspace bundle by its dual:

0—E—nVoE —0.

Now E has its own determinant line bundle %’ on D and similarly E*
has a line bundle .#" . Moreover, by Serre duality .Z" = %' . There is
also, since the index of the d”-operator on E is zero, a canonical section
s' of ' . From the functorial properties of the determinant we have [17]

g e =2,
and under this isomorphism
(13.9) n's = (s
Now consider the line bundle E(¢) on M as & varies in D. For each
£ this is a holomorphic line bundle of degree 0 on the torus M and thus

admits a unique flat hermitian connection compatible with the holomor-
phic structure. This family of hermitian structures on E gives rise to a
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hermitian connection on the determinant bundle .’ . Applying (13.7) to
this connection over D we obtain

/F’=2nin’+nim’+PV o,
D ab

where n’ is the number of zeros of s' in D, and m' is the number on
the boundary.
Now from (13.9), 2n =2n" and 2m = 2m’, hence from (13.8),

(13.10) E/2+ijiF'=iPV/hw'—iPV/ .
' D ab s

However, as noted above, when || =1, dZ —{®" isthe (0, 1) partofa
flat unitary connection which reduces to a U(1) connectionon EQE", E
being the eigenspace of the holonomy. On the boundary therefore the two
families coincide. It follows then from (13.9) and the intrinsic property
of the connection on the determinant bundles that 7*w = 2’ and hence

PV/ w =iPV n*w:PV/ @,
ab ab st

and so from (13.10)
(13.11) E/2:—i/F'.
D

To compute the curvature F' of the determinant bundle of flat U(1)
bundles on a torus M is straightforward. Regarding M as C modulo
{1, t} with parameter z, every flat U(1) connection may be written as

d+wdZ-wdz forweC,

where the metric is the constant metric on the trivial line bundle. From
(13.4)

(13.12) F=d4d"

ﬁ‘@/ dz/\dflzh“—’dw/\dm.
2 Sy n

Now over { € D, { # 0 the eigenspace bundle E({) over M has a flat
C* connection with holonomy given by (u, ji) over the two generators
of m,(M). This is the exponential of (logu, logi) € H : (M; C) and the
holomorphic structure is given by d" + wdZ with wdZ representing the
cohomology class which is the (0, 1) part of (logu, logf). This means
that N
w = tlogu —_log/t_
-7
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Since d(logu) = 6 and d(logji) = 8, this gives from (13.11) and (13.12)
a formula for the energy in terms of the spectral curve:

>

Imr/(re—é) (6 — 8)
T Jb 4(Imt)>

/(16 8) A (78 — 6).

E/2~—1/F

I
2rlm~

(13.13) E=-

Remark. Note from (3.5) and (3.10) that 16 — @ is holomorphic in
D—the poles of 76 and 6 over { =0 cancel.

To obtain a formula more explicit than (13.13), we may consider D,
half the hyperelliptic curve £, as the complement of a disc in a Riemann
surface of genus 1g if g is even and the complement of two disjoint discs
in a surface of genus %( g—1) if g isodd, as in §7. We now represent
(as in the proof of the reciprocity law [13]) this surface as a polygon with
4k = 2g sides (or 4k = 2g-2 if g is odd), which are identified in pairs.
We therefore represent D as a polygon A with an interior disc (or two if
g is odd) removed, and identifications on the outer boundary.

Now the cycle 9D =n~" (S l) is invariant under the hyperelliptic invo-
lution o, but the differentials 6 and 6 transform to their negatives, thus
the periods of @ and # around D are zero. We may therefore write (for
even g) @ =df and § = df for single valued meromorphic functions
f and f on A. In particular, we have 16 — 6 = d(tf — f) and 7/ — f
is holomorphic.

Using Stokes’ theorem, we may rewrite (13.13) as

m!

(13.14)  Im12zniE =Z(7z"ﬁk+"—n"”ﬁ“)-/ (ef — 1)(z6 - 6),
- oD
where 7' (1 < i< 2k) are periods of the differential 76 — 8.

Now recalAl that 6 satisfies the reality condition p'60=-6 on £ and
hence on 8D, which is fixed by p, § = -8, and so '

(13.15) /ob(ff-f)@—é)=—/w(rf 7(z0 - 6).

Also, the periods of 8 and 8 lie in 2miZ, and so are in particular imag-
inary. Thus the periods of 76 — § are the same as those~of —(‘ciG_ - é) .
Applying Stokes’ theorem to the meromorphic form (tf- f)(T6~—6) from
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(13.14) and (13.15) we obtain
20 Res(tf — f)(760 - 6)
(13.16) = - Z(niﬁk“ — 7" - /ab(rf— £(z6 - 6)
= —2niIm1E.

In the case of odd genus, where A is a polygon with two discs removed,
a cut between the discs must be inserted to make f and f single-valued
and this introduces an extra term in (13.14). However, it reappears in
(13.16) and cancels to give the same formula in (13. 17)

Since # and 6 only have poles over { = 0 in D, we compute the
residues directly to obtain the following:

Theorem (13.17). (i) Let f be a nonconformal harmonic map of a torus
with modulus .t to S, and suppose that around one point of 1~ (0), the
differentials @ and 6 have expansions

a . a_,
0=(C +a0 dc, 0=(7+a0+--')dC.
Then the energy of the map is given by
E = 4i(aya_, - &ya_,).

(ii) Let f be a conformal harmonic map, and suppose that, if n=¢,
then 0 and 0 have expansions

a_ N a, .
0= +a,+ dn, 0=(— +a,+- | dn.
7 n

Then the energy of the map is given by
E =2i(aya_, —aya_,).

Example. As an example of the formula, we consider the Clifford torus.
From (6.13) and (6.15) we have

a_, =2ni/—i/8, a, =2n+/-i/8,
a_,=-2ni\/i/8, a, =2n+/1/8,
which give from the second formula of (13.17),
2
E =27n" = area.

Since the Clifford torus is actually the isometric product of two circles of
radius 1/v/2, this checks with the direct calculation of the area.
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14. Postscript

The motivation for generalizing the harmonic map equations to the
gauge-theoretic equations (1.7) was the possibility of finding a general
method of solution for which a special subclass characterized by more
complicated constraints would give the harmonic maps. This : m we have
achieved in Theorems (8.1) and (8.20). We gave the generalized equations
themselves a geometrical interpretation in §1, namely that of describing
the harmonic sections of flat S°-bundles. Such an interpretation does not
however demonstrate very well the special role of the subclass of harmonic
maps. We encountered a more useful point of view in considering the el-
liptic solutions of §10, where the work of Hsiang and Lawson [16] showed
that the gauge-theoretic equations (1.7) corresponded to equations for the
geodesics on a surface of revolution, and the special subclass of harmonic
map solutions corresponded to the closed geodesics.

Strangely enough, there is a general context in which equations (1.7),
for any Riemann surface M, correspond to geodesic equations and the
solutions giving harmonic maps become closed geodesics. The setting for
this is the moduli space of gauge-equivalence classes of connections, as
studied by Mitter and Viallet in [21].

Let &/ denote the space of C* connections on a principal G-bundle
P over a compact Riemann surface M, as in §1. The space .« is an
infinite-dimensional affine space with group of translations Q! (M;adP)
and has a Riemannian metric defined by

(14.1) 26, ¢>=/MB<¢A*¢>,

where B is a bi-invariant metricon G.

The group & of gauge transformations of P acts on .% . This action
is free on the irreducible connections and the tangent space to the orbit
of & at the connection 4 consists of all ¢ & Ql(M ;ad P) of the form
p=d,y, ywe QO(M ; ad P). The orthogonal complement to this tangent
space is, from (13.1) the set of ¢ such that

/ B(d,y Ax¢)=0 Yy cQ'(M;adP),
M

or equivalently all ¢ such that

(14.2) d,x¢=0.

The inner product (14.1) restricted to this horizontal space defines a metric
on the quotient space &/ /% = .# , the moduli space of connections, at
least on the dense open subspace of irreducible classes. This is a standard
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situation in differential geometry, and in particular geodesics on .# lift
to horizontal geodesics in %7 , i.e., geodesics orthogonal to the Z-orbits.

Now .# is just an affine space with a flat metric, so geodesics are straight
lines. The geodesic joining connections 4, and 4, is

v, +2s,  0<i<l,

where VA2 = VA1 + 24,
If d A,¢ = 0 then from (14.2) the geodesic is horizontal at ¢t = 0, and
since

(d, +2d)xdp=d, xp+2lpA+d]=d, x$=0,

the geodesic is horizontal for all .
If A, and A, are flat, then setting 4 = 1(4, + A4,) we have the equa-
tions

dyx¢=(d, +¢)x$=0 and (d,+¢)’ =(d,—¢)" =0,

which as in §1 become equations (1.7), setting ¢ = ® — ®". Thus, the
gauge-theoretic equations (1.7) may be interpreted as the equations for a
geodesic whose endpoints lie on the moduli space of flat G-connections.
This is actually a finite-dimensional subspace of the infinite-dimensional
space # .

The solutions which give a harmonic map are those for which the end-
points are not just flat but trivial and thus from this point of view cor-
respond to closed geodesics emanating from the equivalence class of the
trivial connection. This is of course a reducible connection and hence
actually a singular point of .# .

This observation does not provide much help in solving the equations
but does show the natural context of equations (1.7) from both a gauge-
theoretic and differential-geometric point of view.
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